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Executive summary

Aircraft manufactures and modifiers are developing highly integrated and distributed system
architectures with multiple aircraft functions. System architectures and associated requirements
for aerospace digital avionics systems have experienced acceleration in complexity and
integration over the last two decades. Where initial generations of digital avionics automated
individual functions that were often stand-alone or limited in integration with other airplane-level
functions, today’s complex avionics architectures can be highly integrated across complex

systems.

The purpose of this report is to develop recommendations that assist in the certification and
assurance of highly integrated and distributed digital aircraft systems, including systems
development processes and architectures, requirements validation and integration, new and novel
electronic hardware and software implementation techniques, tools, methods, and processes,
continued operational safety and streamlining approaches for safety assurance and aircraft
certification.

The research objectives included the following:

= Assess current guidance and standards for Integrated Modular Avionics (IMA) systems,
Distributed Integrated Modular Avionics (DIMA) systems, and other distributed systems

and architectures.
= Identify the issues, challenges, and gaps in the current standards/guidance.
= Assess the latest solutions, tools, and technologies.

= Develop criteria, mitigation approaches, recommendations, training material, and position

papers.

The research identified the potential benefits of using Model-Based Systems Engineering
(MBSE) and Model-Based Safety Analysis (MBSA) for highly integrated systems architectures.
It determined that the existing guidance/standards, while they could potentially be improved, are

acceptable.

The major impediment to successful large-scale implementation of MBSE and MBSA is not
related to improving existing industry guidance/standards. The biggest impediments are the lack
of common data standards and tool capabilities. Data standards are the rules by which data is
described and recorded. In order to share, exchange, and understand data, the format, as well as
the meaning, must be standardized. Data standards are the foundation for data

interchange/exchange/language consistency.

X1X



The research included a recommended path to achieve data standards, which in turn would help
with tool development and compatibility. The research also included recommended training
curriculum to implement MBSE and MBSA.
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1 Introduction

Initial generations of digital avionics systems architectures were often designed with stand-alone
or limited functional integration with other systems. Over time, systems architectures have
become more integrated, and are progressing to even higher degrees of integration. This is
particularly true for digital systems architectures involving Integrated Modular Avionics (IMA)
and Distributed Integrated Modular Avionics (DIMA).

The benefits of IMA/DIMA architectures include the following: increased performance and
functionality, weight reduction (due to reduced wiring and Line Replaceable Units (LRUs),

system stability, more efficient modular upgrades, and other benefits.

The benefits of highly-integrated systems architectures also introduce challenges managing
increased orders of magnitude in digital data. A single interface in a legacy federated architecture
can now be translated into several intermediate interfaces in an IMA/DIMA architecture. In
addition, the data required to detail all the interfaces in an IMA/DIMA architecture is
significantly greater than that needed for a single-system federated interface. As a result, there is
a greater number of cross-functional interfaces between different systems; there are more
interfaces that are highly interrelated. As a result, there is an increased engineering effort to
produce, analyze, validate, and verify that the systems are going to behave as expected with no

anomalous behavior.

Regardless of an aircraft’s systems architecture, the flying public expects that the level of safety
will be maintained or improved. Increasing system complexity and dependency could potentially
suggest that industry standards, guidance, and practices may need to evolve to ensure that safety
and development assurance processes maintain the excellent safety records that aviation has
enjoyed to date. Industry is developing model-based systems engineering (MBSE) and model-
based safety analysis (MBSA) processes and guidance to address these challenges and potential
gaps in existing standards. MBSE and MBSA are being developed to help improve the efficiency
of managing the data associated with increasingly integrated systems. They are not required to

implement a safe systems architecture.

In particular, evolution of industry standards, guidance, and practices should consider the process
of validating and verifying a system of components at the aircraft level. Finally, the evolution of
industry standards should consider the future implementation of the Next Generation Air
Transportation System (NextGen), which introduces each aircraft as a node within a broader
system of systems (SoS). The same architecture trends and integration challenges facing the

integrated NextGen environment parallel those occurring within commercial airplanes and other



products. MBSE and MBSA processes and tools could potentially be extended to help with

validation and verification for NextGen systems.

This document summarizes the approach that will be used to identify potential gaps and
improvement recommendations as digital systems continue to evolve and grow in complexity
and integration, with the goal of maintaining the excellent safety record that industry has realized
to date.

1.1 Research scope

The following objectives are identified as successful outcomes of this study, directly benefiting
the Federal Aviation Administration (FAA) and industry:

= Identifying potential improvements in the current guidance, particularly related to
analyzing and evaluating cumulative airplane-level effects from failure conditions and

validating that a sufficient level of safety will be maintained.

= Examining how MBSE/MBSA can be one means to address existing gaps in current

standards/guidance (at the integrated platform level).

= Developing recommendations that assist in the certification and development of highly

integrated and distributed digital aircraft systems.
In order to achieve these goals, the work will include the following (detailed in section 2):

= Assessing current guidance and standards for IMA systems, DIMA systems, and other

distributed systems and architectures.

= [dentifying issues, challenges, and gaps in current standards/guidance related to
development assurance (which includes minimizing the safety risk for undetected errors).
This includes examining Boeing’s experiences from applying current guidance and
standards in the certification of highly integrated, distributed systems architectures, and

then making recommendations on future improvements.
= Assessing the latest solutions, tools, and technologies.

= Developing criteria, mitigation approaches, recommendations, training material, and/or

position papers.



1.2 Research approach, activities, and principal results

The research approach, as shown in Table 1, for this study is divided into six different White

Papers:

Table 1. Research approach

Research Objectives

Detailed Work Description

Assess current guidance
and standards for IMA
systems, DIMA
systems, and other
distributed systems and
architectures.

White Paper 1 (Section 1, 2, 3 and 4)

Analyze existing industry processes, survey industry committee
members responsible for guidelines around development,
validation, and verification of highly integrated, complex digital
systems:

Identify existing industry guidelines for requirements definition,
verification and validation (V&V) processes, systems integration,
and change impact analysis. Identify requirements for regression
analysis and test.

Identify potential shortcomings in current processes, particularly
related to section 4.6.4 (Aircraft/System Integration) and section 6
(Modifications to Aircraft or Systems) of Society of Automotive
Engineers (SAE) Aerospace Recommended Practice (ARP) 4754A
[1].

Identify integral systems integration process gaps related to safety
that are not currently part of ARP 4754A and ARP4761 [2].
Identify common errors which occur in the interrelationships
between process steps in ARP 4754A, RTCA Document (DO)-178
[3], DO-254 [4], and DO-297 [4], particularly those that could
result in incomplete and incorrect requirements and/or systems
integration issues for IMA architectures.

Identify potential shortcomings in DO-331 [6] (Model-Based
Development and Verification Supplement to DO-178C and DO-
278A).

Identify modeling standards.

White Paper 2 (Section 5)

Conduct analysis on process execution problems:

Survey Boeing’s Subject Matter Experts (SMEs), including those
who have work experiences as Authorized Representatives (ARs).
The SMEs will have experiences across multiple programs,
multiple design disciplines, and multiple suppliers.

Identify potential gaps in the development/design assurance
processes for development programs (which are addressed by ARP
4754A [1])

Assess frameworks for highly integrated, distributed platform
systems.




Research Objectives

Detailed Work Description

Identify gaps in existing V&V processes for highly integrated,
distributed platform systems.

Analyze integration related problem reports and determine root
causes.

Investigate how a potential use of virtualization, design of
experiments, and distributed test could mitigate integration and
safety issues for process execution problems.

Identify the issues,
challenges, and gaps in
the current
standards/guidance

White Paper 3 (Section 6)

Identify potential safety issues related to verification and validation
during development and change impact analysis of highly
integrated complex digital systems.

Identify gaps in the design/development assurance processes, used
to verify and validate integrated complex digital systems, and
identify any potential failures and failures effects resulting from
such complex systems integration for highly integrated, distributed
platform systems.

Ensure common understanding of system design model definition.
Model used to express architectural, behavioral, performance, and
interface requirements of the system being modeled.

System Design Model can be analyzed to predict and understand
the modeled system’s capabilities and operational quality attributes
(e.g., performance, reliability, safety, security).

System Design Model is typically technology independent, where
the requirements expressed by the model may be allocated to either
hardware and/or software.

Identify Model-Based Design (MBD) processes, where executable
models (System Design Model) are developed at the system level
for behavioral evaluation and defining requirements for software
process.

System development process.

Requirements development.

Requirements validation.

System-level verification.

Identify MBD processes to integrate between system and software
level models.

Identify MBD processes to integrate between system and airborne
electronic hardware models.

Identify how to conduct model coverage analysis.

Identify integration touchpoints of MBD with V&V processes.




Research Objectives

Detailed Work Description

Assess the latest
solutions, tools, and
technologies

White Paper 4 (Section 7)
Identify state of the art for MBSE and MBSA.

Identify how MBSE/MBSA implementation experience has shown
that errors and omissions, with potential of adverse effects on
safety, can be found and resolved earlier in the design cycle and
with change impact analysis, resulting in less effort and disruption
to industry and regulatory agencies than with traditional methods.
Identify how MBSE/MBSA techniques can be one means of
addressing potential gaps in existing guidance related to
redundancy and capability in IMA architectures to enable more
efficient means of achieving product safety standards.

Identify required functionality needed for MBSE/MBSA tools to be
effective (tool agnostic).

Investigate how model-based design approaches, using formalisms,
could mitigate integration and safety issues for process execution
problems.

Identify MBSE and MBSA approaches to design that emphasize
the injection of additional formalism into preexisting design
processes. These formalisms can be introduced at a variety of levels
of abstraction of design. At each level, the formalisms enable a
number of new analytic capabilities:

Analyses of individual systems (e.g., demonstrating their
conformance to requirements).

Analyses of interactions between systems (e.g., demonstrating their
conformance to communication protocol requirements).

Analyses of the emergent behavior created by the combination of
individual systems into a greater SoS (e.g., demonstrating
properties of the SoS given properties of the systems themselves).
Identify integration touchpoints of MBSE/MBSA with V&V
processes.

Develop criteria,
mitigation approaches,
recommendations,
training material, or
position papers

White Paper S (Section 8)

Identify the prerequisites/criteria before MBSE and MBSA can be
applied.

Identify the appropriate levels of abstraction of the design where
additional formalism can be applied.

Appropriate formalisms must be chosen for each of these target
abstraction levels.

Once the appropriate formalisms have been selected, it must be
possible to obtain the required information, in order to construct the
enhanced models at each level.

The more complete the formalism, the greater detail that is
required.




Research Objectives Detailed Work Description

Identify the limitations/challenges that these prerequisites
introduce:

Consistency among the models at different levels of abstraction can
be both necessary and difficult to obtain. The degree to which the
representations of the various models are substantially equivalent
can more easily satisfy this need.

Assessing the completeness of any particular model can be
difficult. This limitation can be eased somewhat to the degree that
the models themselves become the requirements for the system.
Verifying the correctness of the individual models themselves can
be challenging. More formal representations carry more
opportunities for guaranteeing at least the consistency of the model.

Develop criteria, White Paper 6 (Section 9)
mitigation approaches, | Identify potential additional training material.
recommendations,

training material, or
position papers

Identify proposed modifications to existing guidance/standards.

White Paper 1 activities included a review of potential process issues and shortcomings via

review of the following industry process documents:

1.

SAE ARP 4754A/EUROCAE ED-79A, “Guidelines for Development of Civil Aircraft

and Systems,” December 21, 2010, covering development assurance processes.

SAE ARP 4761, “Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems,” 1996, describing safety assessment processes.

DO-178B/C, “Software Considerations in Airborne Systems and Equipment
Certification,” RTCA Inc., Washington, DC, 2001, covering software design assurance

Processces.

DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” RTCA Inc.,
Washington, DC, April 19, 2000, covering airborne electronic hardware design assurance

Processces.

. DO-297, “Integrated Modular Avionics (IMA) Development Guidance and Certification

Considerations,” RTCA Inc., Washington, DC, November 8, 2005, covering integrated

modular avionics.

DO-331, “Model-Based Development and Verification Supplement to DO-178C and DO-
278A”, RTCA Inc., Washington, DC, December 13, 2011, covering use of model-based



development and verification in the software lifecycle for software that is produced in
accordance with DO-178C.

7. SAE ARP 4754/EUROCAE ED-79, “Certification Considerations for Highly Integrated
or Complex Aircraft Systems,” 1996, likewise covering development assurance

Pprocessces.

8. SAE AIR6110, “Contiguous Aircraft/System Development Process Example,” February
5, 2020, covering a contiguous example of the aircraft and systems development for a

fictitious aircraft design.

9. SAE AIR6218, “Constructing Development Assurance Plan for Integrated Systems,”
October 22, 2018, covering the crucial elements to be considered when constructing the

development assurance plans as described in Chapter 2 of ARP 4754A.

10. Advisory Circular 20-174, “Development of Civil Aircraft and Systems,” Sept 30, 2011,
recognizes ARP 4754A as an acceptable method for establishing a development

assurance process.

11. Advisory Circular 20-170, “Integrated Modular Avionics Development, Verification,
Integration and Approval Using RTC/DO-297,” October 28, 2010, covering guidance on
how to obtain FAA airworthiness approval for the development, verification and
integration of an integrated modular avionics systems for installation into an aircraft or

engine.

12. Advisory Circular 20-115D, “Airborne Software Development Assurance Using
EUROCAE ED-12 and RTCA DO-178,” July 21, 2017, covering acceptable means of

compliance for the software aspects for airborne systems and equipment.

13. Advisory Circular 20-152, “Design Assurance Guidance for Airborne Electronic
Hardware,” July 5, 2005, covering acceptable means to gain FAA approval for showing

the equipment design is appropriate for its intended function.

2 Continual evolution of integrated architectures

Because of improved performance, functionality, and automation, there has been a trend toward
integrated architectures throughout the aerospace industry. Using Boeing as an example, the 777
airplane introduced the first centralized computing system to Boeing Commercial Airplanes
(BCA), based on the Aeronautical Radio, Incorporated (ARINC) 629 protocol. The 787 airplane
incorporated IMA, based on the ARINC 664 protocol (Ethernet).



Figure 1 shows the evolution of avionics architectures with different ARINC protocols.

ARINC 429 protocol uses point-to-point unidirectional buses. If bi-directional communication is
required, there will be two buses. Most LRUs execute computing functions locally. Signals are

transmitted from the broadcaster to all receivers.

ARINC 629 protocol uses multiplex buses, two-way communications, and multiple transmitters
per an individual bus. There is some computing centralized within an Aircraft Information
Management Systems (AIMS) (which also routes signals). Signals are broadcast to every LRU

connected to the bus. Bus schedules are required to avoid signal clashes.

ARINC 664 protocol uses multiplex buses, two-way communications and multiple transmitters
per individual bus. The computing is centralized. Most LRUs gather raw data that are processed
by centralized computing functions. Message traffic is directed to subscribers through routers

(switches); signals (messages) are not broadcast over the entire network.
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Figure 1. Commercial airplane digital networks evolution



Initial BCA digital networks incorporated the ARINC A429 protocol. The 777 airplane
introduced the first centralized computing system to BCA, based on the A629 protocol. The 787
airplane incorporated IMAs, based on the ARINC A664 protocol (Ethernet).

Each part of the digital network’s evolution has increased performance, allowing more
information to be transmitted and received more efficiently. However, this evolution has also

increased the functional integration efforts to ensure that the system is functionally integrated.

Software interfaces are not as “transparent” as mechanical interfaces. In addition, most complex
system interfaces have inherent programmatic and contractual complexity, as they could
potentially cross multiple hardware and software suppliers. Using the number of signals and
software lines of code (SLOC) as rudimentary metrics for increased integration, Figure 2 shows

the trends across several aircraft models over the past decades.
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Figure 2. Integrated, distributed systems architectures

Figure 3 provides a practical example of how increased integration manifests itself. Both
architectures are implementing the same function: a hydraulic pump was started with a button
press on the flight deck overhead panel, and the transition was indicated with a message and with
a light on the panel switch.

In the federated system (labeled “Legacy Architecture” in the left-hand portion of Figure 3), a
control switch in the flight deck is activated and sends a discrete signal directly to the Hydraulic
Pump Control Unit. Another discrete signal is sent directly back to an indicator light in the flight

deck. Managing the interfaces (latency, timing, for example) is relatively straightforward.

In the IMA/DIMA architecture (labeled “IMA (A664) Architecture” in the right-hand portion of
Figure 3), the same control switch can exist in the flight deck. However, instead of sending a

discrete signal directly to the Hydraulic Pump Control Unit, the activation signal requires several



protocol conversions (as it passes through several switches and remote data concentrators).
During each signal protocol conversion, the signals must be validated. In addition, end-to-end

timing, latency, and jitter, for example, must be integrated across all the intermediate

components.
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Figure 3. Same function, different networks

2.1 Discussion of NextGen integration at the system of systems level

Similar to the increased integration occurring in aircraft, the environment in which the aircraft
operate is also changing. Figure 4 shows the “5A” aviation eco-system construct to describe this
more integrated environment, in which the aircraft is a node in the broader aviation ecosystem.
This “5A” environment consists of the airspace, airline, airplane, airport, and air traffic control

elements.
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An aircraft that employs modern IMA architecture can be considered a SoS. Similarly, the SA
aviation ecosystem is also very much a SoS (admittedly much larger than a single aircraft). That
said, the same architecture complexity trends and integration challenges that occurred within
IMA/DIMA aircraft would be facing the evolving SA environment.

= New functionality.
= Reallocation of existing functionality (including autonomous systems).
= New interdependency.

= Increased air vehicle.

Airspace
= Airspace & Procedure Design
» Traffic Flow Constraints

» Weather & Wind Forecasts

* Real-time Flight Optimization

Air Tratfic

Camml

* Traffic Management
* Infrastructure
» Regulafory and Fees

Mo
/ Communications & Connecﬂ'w‘ﬂ\

Data Management & Equipage
Integrafed Design & Functionality

Alirtine

+ Flight Operations ‘
« Maintenance & Engineering = NI
» Dala & information Management
= Crew and Fleet

» Surface Movement
« Arrival & Departure Optimization
» (Gate & Equipment Optimization

Figure 4. “5A” environment (source: Boeing)

While the focus of this research is on the aircraft, the potential exists that some of the

recommendations could be extended to the larger SA SoS aviation ecosystem.

3 Model-based activities

As discussed in the previous section, changes in systems architectures are driving increased

interest in modeling activities to improve performance throughout the entire lifecycle.

In the context of Figure 5, Model-Based Engineering (MBE) can be considered as part of the
fourth industrial revolution.
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Note: The term “Digital Engineering” is typically used by the Government, particularly the
Department of Defense. For the purposes of this paper, the terms “Digital Engineering” and
“Model-Based Engineering” are interchangeable.

4th
Industrial Revolution

3rd

Industrial R luti
— ndustrial Revolution DIGITAL

INFORMATION

Industrial Revolution

Use of a digitally

1st TECHNOLOGY ,
) : connected end-to-end
Industrial Revolution EL S IRIGAE Use of electronics enterprise
MECHANICAL Use of mass and IT to further
production powered automation

Use of mechanical
. production powered by
water and steam

by electrical energy

1800 1900 2000
| /I L A N [ B . L [
TODAY
Digital Engineering (DE) / MBE
Source: DoD Digital Engineering Strateqy, Traditional Models and Simulations (M&S) Model-Based Systems
20" Annual NDIA SE Conference, 10/25/2017 Engineering (MBSE)

Simulation Based Acquisition (SBA) - .
(1991) Systems Engineering “V” Model

Figure 5. MBE/digital engineering (source: Boeing)
A quick summary is as follows:

1. The first industrial revolution introduced machines into the production process. This

included the use of mechanical production powered by water and steam.

2. By the second Industrial Revolution, mass production was introduced, and electrification
largely contributed to the success of this era.

3. The third Industrial Revolution resulted from the introduction of the computer and
information technology.

4. In the current era, digitalization reshapes the way that we innovate and operate.

When one considers the anticipated changes in the entire aviation ecosystem (as shown in Figure
6), it becomes more apparent that the ability to digitally integrate and validate multiple systems
interactions and behaviors will become increasingly important. Modeling has the potential to

improve the efficiency of doing this integration in the broader aviation ecosystem.

12
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National Airspace System (NAS) Project
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Figure 6. National airspace system evolution (source: National Aeronautics and Space
Administration [NASA])

To ensure there is a common framework and taxonomy, this report will use industry standard
definitions for different modeling activities (as defined in Table 2). Any deviations from industry

standard definitions will be annotated.

Table 2. Industry modeling activities and taxonomy

Modeling Activity Taxonomy

Model-Based Enterprise An organization that applies modeling and simulation
technologies to integrate and manage its technical and

business processes (National Institute of Standards and
Technology or NIST).

Model-Based Engineering An approach to product development, manufacturing, and
lifecycle support that uses a digital model and simulation to
drive first time quality and reliability (NIST).
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Modeling Activity Taxonomy

Model-Based Systems Execution of discipline (SE) using digital model principles
Engineering (SE) for system-level modeling and simulation of physical and
operational behavior throughout the system lifecycle
(International Council on Systems Engineering or INCOSE).

Model-Based Definition A part’s definition using a three-dimensional (3D) model.
May define feature and part characteristics within the 3D
model. Industry standard (The American Society of
Mechanical Engineers [ASME] Y14.41).

Model-Based Instructions Graphical display of information necessary for
build/assembly, including MBD engineering intent (e.g.,
process specs, geometric definition and tolerances) (NIST).

3.1 Model-based engineering

The NIST definition of MBE is as follows:

An approach to product development, manufacturing and lifecycle support that uses a digital

model and simulation to drive first time quality and reliability.—NIST
(The Department of Defense [DoD] has referred to this approach as “Digital Engineering.”)
It is important to emphasize that MBE is an approach; it is not a specific process or tool.

In an MBE approach, the models are the cohesive element across the system’s lifecycle. Data
connectivity is critical in an MBE approach, which digitally connects value streams and
workflows across the product lifecycle. A significant amount of data can be required to help
validate and verify that an aircraft is going to perform as expected with no anomalous behavior.
Section 4.1 provides examples of the data flows between the safety processes, the development
assurance processes, and the software and hardware design assurance processes. The goal of

MBE is to help these types of data connectivity more efficiently.

Data connectivity can help eliminate non-value added manual data translation — which is effort
that adds cost and increases chances of introducing quality defects. The MBE approach can help
with product development by ensuring that the information being used to make decisions is
shared, complete, and accurate. This helps ensure that everyone is (digitally) “on the same page.”
Doing so will enable rapid decisions for design and airworthiness. It should also reduce scrap

and rework by reducing translation and reentry errors, thus achieving first time quality.

Aspects of MBE have been implemented in various forms for decades. However, this was mostly

accomplished by a document-centric, “siloed” perspective (e.g., mostly from an aircraft design
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perspective, from a production system perspective). MBE, with improved tools integration and
processes, should support the full realization of the “digital thread” throughout the product
lifecycle. Establishing a digital thread allows the program to connect information and have an
authoritative source of truth, from beginning to end, and at the level of detail deemed appropriate
by the program — from requirements, through detailed design, integration, V&V, customer
delivery, and support services thereafter. A digital thread connects traditionally siloed elements
in design, manufacturing, and service processes, and provides an integrated view of the product

lifecycle from conceptualization to retirement.

MBE centralizes all information about the system in a model, often called the “authoritative
source of truth.” Stakeholders, such as development teams and suppliers, can access the model at
different views and levels of detail. The key is that different stakeholders, while having different
interests in certain data types and levels of detail, are accessing the same data from the
authoritative source of truth. This promises to help facilitate making data-driven decisions in a
more efficient manner from a common source of product-definition truth. In order to accomplish
this, a sophisticated common modeling environment, including tools, good practices, and

adherence to industry standards, is required.

Note: Industry standards do not yet fully exist to support MBSE/MBSA completely. This will be
discussed in subsequent sections.

3.2 Model-based systems engineering

The International Council on Systems Engineering (INCOSE) defines MBSE as the execution of
SE discipline, using digital model principles for system-level modeling and simulation of
physical and operational behavior throughout the system lifecycle. MBSE is a subset of MBE
and is the SE aspect of MBE. The distinctions between these two are shown in Figure 7. For the
intent of this report, the focus of MBSE will be on the aircraft.
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Figure 7. Scope of MBE and MBSE

MBSE is used to integrate SoS, system, segment, subsystem, component, and software
requirements with the functional, logical, and physical architecture, plus behavior of the system
(RFLP+B):

= Requirements: The traditional centerpiece of the systems development process, where
the needs of the platform are expressed in terms of customer business and operational
needs, regulatory compliance, and other system of system needs. These top-level
requirements are decomposed to specify platform capabilities, functions (and associated
performance), logical elements, and physical installations in a hierarchical construct.
Verification of the design implementations is performed against requirements and traced
from the bottom to the top of the hierarchy.
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* Functional Architecture: What the platform and its systems do — a set of functions and
their sub-functions that define the transformations of input flows into output flows

performed by the system to achieve its mission.

= Logical Architecture: The organization and relationships of logical elements of a
system/platform. System block diagrams and interfaces are traditional representations of

the logical architecture.

= Physical Architecture: An implementation of the logical architecture into a buildable
form for the production process that helps define the specific configuration — the natural
transition where the logical elements take physical form (e.g., LRUs, software, wire

bundles, motors) on the platform and define what the factory builds.

= Behavioral Architecture: An architecture defining the behavior of functions statically in

diagrams (e.g., logic) or dynamically in models for simulation.

As depicted in Figure 8, a key aspect of MBSE is the integration of the different architectures:
integrated requirements, functions and logical system elements that drive, and are ultimately

consumed by, the physical design of the system.

Requirements }

%,
Functional < o)
Architecture ),
(What Has To J ’&60

\ l Be Done)

Logical |
Archileclure
(How It Is Done) J

b,
&
6\.
3
—

h 4
[ Physical

\\ Architecture
(How It Is
Implemented)

Figure 8. Integrated systems engineering architectures
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The purpose of the integrated architectures in MBSE is to ensure that the product will perform its
intended functions with no anomalous behavior, as defined by the requirements. In addition, as
systems become more integrated, it is important to ensure that there is no unacceptable emergent

behavior. Some of the key processes to achieve the integrated SE architecture include:
= Requirements allocation (to functional, logical, and physical architectures).
= Functional allocation (to logical architecture).
= Logical allocation (to physical architecture).

3.2.1 Requirements allocation

As shown in Figure 9, requirements allocation, which is an important part of MBSE, is
conducted to help ensure a complete and correct set of requirements. The purpose of

requirements allocation is to:
* Provide a framework for identifying and validating functional requirements.
» [dentify missing requirements.
= Develop derived requirements.
= Identify unrealistic and conflicting requirements.
* Eliminate poorly written requirements.

= Improve product integration by combining functions within the system and eliminating

duplicate functions.
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Requirements allocation is complete when:

= All design and physical/installation requirements are allocated to the systems,

subsystems, or equipment (or discrepancies resolved).

= All functional and performance requirements are allocated to functions or functional

interfaces (or discrepancies resolved).

Figure 10 provides an example of some of the considerations that should be made during the

requirements allocation to help ensure a complete and correct set of requirements.

Note: This example is mostly related to the requirements allocation to the functional
architecture. Similar requirements validation activities should be conducted for the requirements
allocation to the logical and physical architectures.

One of the benefits of MBSE is to allow the different stakeholders to have an integrated view of

the requirements driving the design, for example:
= What does it have to do?

= How well does the system need to do it (i.e., performance)?
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=  What constraints will limit the design trade space (e.g., material, environmental

conditions)?

= What are the cross-functional interfaces?
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Validation Checklist

= Are functional requirements captured?

= Are performance requirements captured?

= Are derived design requirements identified?
» Are they not design dependent?

= Are physical dimensions captured?

= Are product verification (which could drive design

captured)?

Revise Functions / Requirements Baseline
based on Validation checklist

« resolve any discrepancies between listed
functions and listed requirements. If one
exists in one baseline and not the other:

+ either delete requirement/function so
that they both don't exist

« add requirementffunction so that they
both exist

+ resolve conflicting / competing requirements
(particularly design requirements in context of
performance reqguirements)

Figure 10. Requirements allocation — validation

Requirements allocation can help identify the following conditions:

= Unallocated requirements.

= Functions without allocated requirements.

= Logical/physical definitions without allocated requirements.

Metrics, in and of themselves, will not guarantee that all missing requirements will be identified.

For example, if a logical definition has nine requirements allocated to it, and a tenth requirement

is missing, the metrics will not identify this. Metrics will provide first order validation (e.g.,

functions identified that no systems are implementing, logical definitions with no functions or

requirements). By conducting the allocation, the designer will have the context to better
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understand tradeoffs and cross-functional impacts (i.e., improve the chances that missing and

conflicting requirements will be identified and resolved).

3.2.2 Functional decomposition and allocation

The purpose of this SE process is to transform the functional, performance, interface, and other
requirements that were identified through requirements analysis into a coherent description of
system functions that could be used to guide the logical design activity. Decomposing higher-
level functions into lower-level functions, identifying functional interfaces, identifying timing
relationships between functions, allocating performance requirements to functions and design
requirements to logical designs, and allocating functions to the logical designs are integral parts
of functional allocation. Typical deliverables include the following: functional architecture, data
flow diagrams (DFDs), functional flow block diagrams (FFBDs), and allocation matrices.

Functions are discrete actions (typically using action verbs followed by nouns) necessary to

achieve the system’s objectives.

The functions identify “what” the system had to do (e.g., calculate air temperature). These
functions may be stated explicitly, or they may be derived from stated requirements. The
functions will ultimately be performed or accomplished through use of equipment, personnel,

software, or a combination.

Functions are hierarchical in nature and have two key relationships: parent-child functions and
sibling functions. For example, airplane-level functions are decomposed into systems-level
functions. Systems-level functions are decomposed into sub-functions with the intent of defining
alternative sub-function arrangements and sequences and functional interfaces. Validation checks
should be conducted to ensure that the task completion of the children function would result in

the task completion of the parent function.

The result of the functional decomposition process is a functional architecture, consisting of, for

example, the airplane, systems, and component level functions.

In its most basic form, the functional architecture is a simple hierarchical decomposition of the
functions with associated performance requirements. As the architecture definition is refined and

made more specific, the functional architecture becomes more detailed and comprehensive.

Functions are identified as part of the functional decomposition process. These functions are then
allocated to the systems/subsystems that would implement these functions. Table 3 represents a

notional view of a function to systems allocation matrix.
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Table 3. Systems required to implement airplane-level function

Decomposed functions | Implementing system
Function System
Function System A
Function System A
Function System B
Function System C
Function System D
Function System D
Function System E

The functional allocation helps assess the coupling, connectivity, and cohesion of the design.

3.2.3 Coupling

Coupling is a measure of dependence between system elements within a system architecture. The
desire is to have low coupling; systems function as much as possible as standalone entities, and
neither require many inputs from other systems, nor produce many outputs for other systems. To
ensure low coupling, sibling functions with many data flows between their descendants are
allocated, as much as possible, to the same system. Sibling functions with few data flows
between their descendants may be allocated to different systems. Figure 11 and Figure 12 show

the difference between high coupling and low coupling.

Functions Systems

Allocated to Allocated to
System 1 Data Flows System 2

Figure 11. High coupling

Low coupling is desired.

22



Functions Systems
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Figure 12. Low coupling

3.2.4 Cohesion

Cohesion is the similarity of tasks performed within modules (e.g. functional, sequential,

communication, procedural, temporal, and logical).

A cohesive module (system) performs a single task, requiring little interaction with other
modules/procedures. A function is cohesive to the degree that the function and all its descendants
are allocated to a single system. High cohesion is achieved by allocating functions to systems as
high up the function tree as possible. High cohesion contributes to modular design and fault

isolation. Figure 13 and Figure 14 show low cohesion and high cohesion.
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Function 1

Figure 13. Low cohesion

High functional cohesion is desired.

Function 1

| | Allocated to System A
Function 1.1 Function 1.2 Function 1.3
- I T B _
Function Function Function Function Functidn Function
1.1.1 112 1.1.3 131 2 133
System B
Allocated to
I
Function &
System C
| |
Function 5.1 Function 5.2 Funcyfion 53
| 7 | |
Funcl'.tion Funcltion Funé.tion Function Funttion Function
511 512 513 531 5372 533

Allocated TN

Function 1.1

Function 1.2

Functi

on1.3

3.2.5 Connectivity

Figure 14. High cohesion
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Connectivity is a measure of the degree to which data flows occur between non-sibling

functions. High and low connectivity are depicted in Figure 15 and Figure 16.
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3.2.6 lIterative architecture

Functional decomposition and allocation are repeated to define successively lower level
functional and performance requirements, thus defining architectures at ever-increasing levels of
detail. The functional allocation and analysis process was, per the design process, conducted in

iterative — often simultaneously performed — steps.

These steps are highly interrelated, and require multiple iterations at each level. As the lower-
level work products are finalized, detailed review of the higher-level tiers is necessary to correct

and realign the levels.

The functional allocation and analysis activities result in the creation of the functional

architecture and the allocation between the functions and the logical architecture.

3.2.7 Logical allocation

Logical allocation to the physical architecture is repeated to allocate successively lower levels of

the logical architecture at increasing levels of detail. The logical architecture is allocated in
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sufficient detail to support the integrated system design. This includes enabling physical
integration. One of the key goals of logical allocation is to validate that the logical elements have

been “consumed” by the physical architecture.

3.3 Model-based safety analysis

Traditional airplane safety analyses (e.g., Preliminary Airplane Safety Assessment [PASA],
Preliminary System Safety Assessment, Fault Tree Assessments, Failure Modes, and Effects
[Criticality] Analysis) are often performed manually (and completely and correctly). However,
they can be labor intensive, especially for modern, highly integrated airplanes. MBSA is a

potential way to improve efficiency, while achieving the same desired results.

MBSA is an opportunity to more closely couple model-based design activities and the safety
analyses. A key goal is to ensure that a common model is used for both SE and safety
engineering. Working from integrated, common models should reduce the likelihood of late
discoveries during the safety analyses, which will help reduce non-recurring cost during the

design process.

Industry consensus guidance on MBSA will be forthcoming. An MBSA appendix will be
contained in the upcoming release of ARP 4761A. The MBSA appendix describes the concepts

and processes associated with performing a safety analysis using failure propagation models.

Performing the safety assessment of a design consists of understanding the system content and

behavior to provide safety analysis results that are compared to objectives/requirements.

In order to understand system behavior, the safety analysis process interprets design documents
and involves clarifying discussions with the engineers who independently develop the design. In
the classic safety assessment approach, the safety analyst uses the acquired understanding to
construct fault trees or other safety analysis artifacts manually. The MBSA methodology
achieves the same results as the classical method, but adds benefits of integrating safety analyses

with a shared model truth-source.
As shown in Figure 17, the overall goals of MBSA are to:

= Support safety analysis of its function and/or architecture by creating representative

failure models of the system.
= Help address the complexity of functions and systems.

= Establish a common communication mechanism between designer and safety analyst.
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Figure 17. Model-based safety analysis approach

MBSA is a generic term for a family of techniques and methods, based on a Failure Propagation
Model (FPM). The Failure Propagation Model is comprised of all the components in the system
architecture necessary to represent each subsystem and their fault behaviors to the required level
of abstraction, in order to understand how component failures in the system architecture affect
their supported functions. Each component in the model has attributes (e.g., resource dependency

logic, failure rate), which are used by the various analyses engines.

The FPM describes the relationship between the inputs and outputs of the elements in a nominal
situation the failure events with their occurrence conditions (based on input data and failure
mode) and their effects on outputs, and the links between elements according to the system

architecture.

Figure 18 identifies the MBSA process inputs and outputs. MBSA is considered a specialized
subset of MBSE (creation of the FPMs). Ideally, MBSA will be using the same models
developed as part of MBSE (e.g., functions, systems architecture).
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Figure 18. MBSA process (inputs and outputs)

3.4 Systems engineering “V”’ model in a model-based environment

The traditional SE “V” portrays the decomposition of requirements and design definition from
the system down to components (left side of the “V”’) and the resulting systems integration and
validation from components up to the end-user system (right side of the “V™). It has been used by
government, industry, and academia for over 25 years as a model of the product development
process for complex engineered systems. The V-model originated at a time when engineering
processes had become narrowly stove-piped, and handoffs and interfaces between disciplines
were document-centric and were manual exchanges. The traditional SE “V” was developed in
the 1990s, some 30-40 years after the recognition of the need for SE to develop complex ballistic

missile systems.

The icon portrays the engineering lifecycle as a linear series from left to right and the
decomposition of requirements and system elements from the top to bottom of the left side of the
V. The right side of the V represents the realization of the system concept as it passes through

integration, test, and evaluation and finally fielding of the system.

As shown in Figure 19, the “V” symbol depicts the end-to-end product development process
across the entire life cycle. The “V” starts with customer needs and ends with delivered solutions

to fill those needs. The “V” has historically focused on the development of the physical systems
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(both hardware and software) to meet those needs. In other words, the traditional SE “V” focuses
on the design and delivery of the physical product to meet customer needs. A series of
milestones or artifacts mark the linear progression (from left to right) through the SE process.
Operations  Changes f . Retiement /

and and
Maintenance  Upgrades pcent

System Verification Plan
ISystem Acceptance)

Subsystem
Verification Plan
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Software / Hardware Document/Approval

Implementation
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SOURCE: US Department of Transportation Federal Highway Administration
https:/lops.fhwa.dot.gov/publications/seitsquide/section3.htm

Figure 19. Traditional systems engineering “V”

The iconic SE “V” (in its various representations) is an intuitive and instructive framework for
depicting product development. However, there are some drawbacks to the traditional SE “V.”
Unfortunately, the “V” is sometimes interpreted only being applicable to development of a
product, when in reality, it should also be applied simultaneously to the production system, as

well as the services and support systems associated with the product.

= The layout of the “V” implies a sequential development process. Attempts to map the
“V” symbol to a project schedule, timeline, or standard gated process, only serves to

exacerbate this misconception.

= The origin of the “V” was during the “document-centric” age, when information was
literally handed off between individuals, groups, and lifecycle phases. Unfortunately, the
“V” symbol does not adequately reflect the digital era of an MBE ecosystem, including
Digital Thread and Digital Twins.
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= The layout of the “V” also fails to depict the integrated and iterative nature of product
development clearly. Attempts to address this shortcoming by adding horizontal
“feedback” links across the “V” only serve to further complicate the symbol and are often

overlooked or misunderstood by the audience.

= Historical attempts to update the “V”’ symbol have only served to increase its complexity
and made it that much more difficult to understand.

However, this linear representation of the “V” model is not as helpful in depicting the real-time

interchange of data and information between the complex interactions of an MBE ecosystem.

MBSE and MBSA involve the transition from a document-focused mindset to a digital
engineering mindset that leverages information flow across the lifecycle. One of the more unique
challenges is the development of physical worlds and virtual representations of the products and
services. This in itself leads to a virtual product development cycle that can be treated as a

“mirror image” of the physical product development cycle.

MBE requires a multi-dimensional view into the activities involved in SE. Additionally, in MBE,
data is more expressive than what is generally allowed by passing documents in the “V.”
Therefore, as more model-based approaches are implemented, the “V” loses some of its

effectiveness for SE.

Boeing developed Figure 20 to acknowledge the importance of treating the digital twins of “as-
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designed,” “as-built,” “as-delivered,” configurations as products in their own right. It is intended

to:

= Represent MBE as a multi-dimensional, iterative process encompassing both physical

and virtual implementations.
= Reflect the integrated nature of MBE, linked with feedback to related lifecycle elements.

= Show relationships spanning business domains (e.g., product, production, service and
support).

= Communicate how the SE process is different by using MBE.

= Be easy to understand, yet remain flexible and tailorable to design iterations.
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Source: Boeing

Figure 20. SE diamond

Note: The purpose of this is to highlight how MBE changes the traditional SE processes. It is

not meant to advocate for a new icon.

Regardless of how this is represented graphically, it is important to recognize the development of
virtual systems or digital twins that inform the development of the physical systems. This is one

of the major changes, as we transition from SE to MBE.

Figure 20 updates the traditional “V” to add a virtual representation of the product, production
system, and services and support systems. The “MBE Diamond” separates the physical and

virtual paths into two Vs that face each other (top and bottom).

The bottom half of the MBE Diamond, as shown Figure 21, aligns with the traditional SE “V”
and is focused on the instantiation of the physical systems (including the platform product,
production system, services and support, test and evaluation [T&E]) across the lifecycle. The
bottom half of the diamond represents the physical systems (retaining the traditional SE “V”
flow). The “V” starts with customer needs and ends with delivered solutions to fill those needs.
The “V” has historically focused on the development of the physical systems (both hardware and

software) to meet those needs.
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Source: Boeing

Figure 21. Bottom half of MBE diamond

The top half of the MBE diamond represents the “Digital Twins” (i.e., the virtual systems
representation of the physical systems). Figure 22, with a virtual “V” flipped on top of the
physical “V,” recognizes the development of the virtual systems or digital twins that inform the
physical systems development. It demonstrates the transition from systems engineering to
MBSE, which uses modeling and simulation to create digital twins of the physical systems.
Similar to the lower “V,” symmetry exists between the artifacts on the left and right side of the
upper “V.” Models developed on the left side of the MBE diamond are used for increasingly
higher fidelity simulations on the right side.

MODEL AASED PRODUC FION P1LANNING .--»—-.. VIRTUAL PRODUCTION SYSTEN

MODEL BASED DEFINITION .M
MODEL BASED SYSTEMS ENGINEERING i é" "? VIRTUAL CERTIFICATION
BAFSINE 55 MODEL @ VIRTUAL OPERATIONS

VARNE T [MISSION) BODEL VERTUAL ECOSYSTER
.

Source: Boeing

Figure 22. Top half of MBE diamond

The integrated physical and virtual development cycle is represented from left to right through
the diamond, from needs through sustainment/operations and maintenance (O&M). Figure 23
shows the symmetry between the virtual and physical systems. This is intentional, as the digital

twins are used to inform the development of the physical systems.

32



MODEL BASED PRODUCTION PLANNING ¢ %

MODEL BASED DEFINITION .

MODEL BASED SYSTEMS ENGINEERING @@

BUSINESS MODEL
®

MARKET (MISSION) MODEL
®

Source: Boeing

Figure 23. Digital twins and physical systems (left side)

Figure 24 shows the symmetry between the artifacts for virtual and physical systems. The
physical systems can be used to inform the virtual systems; the virtual systems can be used to
inform the physical systems. For example, production data analytics from the shop floor can be
used to update production simulation models to conduct real-time “what-if” analyses related to
production rate changes. As another example, data from high-fidelity virtual simulations of the
product operating in its physical environment can potentially be used to reduce the need for

physical testing.

Source: Boeing

Figure 24. Virtual and physical systems (right side)
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As shown in Figure 25, the central, circular arrows symbolize the integrated development of the
platform product, production system, services and support, and T&E. The Digital Thread is
represented in the interior of the diamond, linking models/simulation (digital twins) to the
physical design of the systems (platform product, production system, services and support, and
T&E). The Digital Thread provides continuous feedback into the process leading to better-
informed designs that balance system performance, lifecycle cost, and operations and

maintenance targets.
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Figure 25. Digital thread

The Digital Thread is represented in the interior of the diamond, linking models/simulation
(digital twins) to the physical design of the systems (Platform Product, Production System,
services and support, and T&E). The Digital Thread provides continuous feedback into the
process, leading to better-informed designs that balance systems. The MBE Diamond treats the
development of the digital twin and physical twin as concurrent paths that both inform each other
across the product lifecycle. The process is integrated via the digital thread across the platform

product, production system, and services and support system.

4 Current guidance and standards for IMA and DIMA systems

The first part of this research is to assess the current guidance and standards for IMA, DIMA,
and other distributed system architectures. Table 4 describes the approach to address these

research objectives.
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Table 4. Existing guidance for IMA and DIMA systems

Research Objectives

Detailed Work Description

Assess current
guidance and
standards for
Integrated Modular
Avionics (IMA)
systems, Distributed
Integrated Modular
Avionics (DIMA)
systems, and other
distributed systems
and architectures.

Analyze existing industry processes, survey industry committee
members responsible for guidelines around development, validation
and verification of highly integrated, complex digital systems:
Identify existing industry guidelines for requirements definition,
verification and validation (V&V) processes, systems integration and
change impact analysis. Identify requirements for regression analysis
and test.

Identify potential shortcomings in current processes, particularly
related to Section 4.6.4 (Aircraft/System Integration) and Section 6
(Modifications to Aircraft or Systems) of SAE Aerospace
Recommended Practice (ARP) 4754A [1].

Identify integral systems integration process gaps related to safety that
are not currently part of ARP 4754A and ARP 4761.

Identify common errors which occur in the interrelationships between
process steps in ARP 4754A, RTCA Document (DO)-178, DO-254
[4], and DO-297 [5], particularly those which could result in
incomplete and incorrect requirements and/or systems integration
issues for Integrated Modular Avionics architectures

Identify potential shortcomings in DO-331 (Model-Based
Development and Verification Supplement to DO-178C and DO-
278A).

Identify modeling standards.

4.1
processes

Existing guidelines on system development and assurance

The following guidelines are used for requirements definition, V&V processes, systems

integration, and change impact analysis for IMA and DIMA architectures. Figure 26 shows the

standards often used for system, software, and airborne electronic hardware development; it

illustrates the flow between safety assessment processes covered by ARP 4761 [2], development

assurance processes covered by ARP 4754 [7], and design assurance processes covered by DO-
178 [3] and DO-254 [4]. For the purpose of this document, DO-178 and DO-254 will be referred

to as “design assurance activities.”
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Figure 26. Standards used for system, software, and AEH development

Table 5 provides additional details on the purpose and primary level at which these standards are

applied (e.g., airplane, system).

Table 5. Existing industry processes

Industry Purpose Primary Applicable Level
Guideline

ARP 4761, Provides guidelines and methods for Airplane system/subsystem
Guidelines and performing the safety assessment for civil

Methods for aircraft, including (but not limited to)

Conducting the safety analyses, such as Functional

Safety Hazard Assessment (FHA), Preliminary

Assessment System Safety Assessment (PSSA), and

Process on Civil
Airborne Systems
and Equipment

2]

System Safety Assessment (SSA).

ARP 4754A,
Guidelines for
Development of
Civil Aircraft and
Systems [1]

Provides guidelines on the development
assurance process. This includes
validation of requirements and

verification of the design implementation

for certification and product assurance.
The development planning elements
consist of:

= Development.

= Safety program.

= Requirements management.

= Validation.

Airplane system/subsystem
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Industry
Guideline

Purpose Primary Applicable Level

* Implementation verification.

= Configuration management.

= Process assurance.

= Certification.

= Software integration process.

= Software configuration
management.

= Software quality assurance
process.

= Certification liaison.

DO-254, Design

Provides design assurance guidance for Airborne Electronic

[5]

Assurance the development of airborne electronic Hardware (AEH)
Guidance for hardware. Key processes include:
Airborne = Hardware safety assessment.
Electronic = Requirements capture process.
Hardware [4] » Validation.
= Verification.
= Configuration management.
= Process assurance.
= Certification liaison.
DO-297, Provides guidance for IMA modules, Software AEH
Integrated applications, and systems. The integral
Modular Avionics | processes consist of:
(IMA) = Safety assessment.
Development = System development assurance.
Guidance and »  Validation.
Certification »  Verification.
Considerations

= Configuration management.
= (Quality assurance.
= Certification Liaison.

As shown in Table 6, the FAA has issued four Advisory Circulars (ACs) that define industry

guidelines as acceptable means of compliance to the policies. Compliance is determined by the
FAA or their delegates.

Table 6. Advisory circulars and industry guidelines

Advisory Circular Industry Guideline
AC20-174 [10] ARP 4754A [1]
AC20-170 [11] DO-297 [5]
AC20-115C [12] DO-178C [3]
AC20-152 [13] DO-254 [4]
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It is important that to clearly define the interfaces and dataflow between these guidelines.

4.1.1 Interrelationships for safety assessment and development assurance
processes

Per ARP 4754A [1], as presented in Figure 27, the following data may be passed to the safety

assessment processes from the airplane/system development assurance processes:
= Aircraft functions.
= System functions.
= Systems architecture.
= Systems implementation.
= Functional Development Assurance Level (FDAL).

= [tem Development Assurance Level (IDAL).

ARP4761

o
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Figure 27. Interrelationships between ARP 4754 and ARP 4761

Per ARP 4754A [1], the following data may be passed from the safety assessment processes to
the airplane/system development assurance processes:

= Failure condition, effects, classification.
= Safety requirements.
= Safety objectives.

» Architectural safety requirements (derived from safety analyses).
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Item requirements (derived from safety analyses).
Separation requirements.

Verification.

Function, failure, and safety information (particularly, derived safety requirements) flow from

the ARP 4761 processes to the ARP 4754 A processes. System design information flows from the
ARP 4754A processes to the ARP 4761 processes.

4.1.2 Interrelationships between development and design assurance activities

The transition from development assurance processes to software and hardware design assurance

processes occurs when the requirements are allocated to hardware and software items. This is
when the transition occurs from ARP 4754 [7]/ARP 4754A [1] to DO-178 [3] and DO-254 [4].

4.1.3 Interrelationships between DO-178 and ARP 4754

Per DO-178C, the following data may be passed from the system development processes to the

software lifecycle processes:

Systems requirements allocated to software.
System safety objectives.

Software level of software components and a description of associated failure

condition(s), if applicable.
System description and hardware definition.
Design constraints, including external interfaces, partitioning requirements, for example.

Details of any system activities proposed to be performed as part of the software
lifecycle. Note that system requirement validation is not usually part of the software
lifecycle processes. The system lifecycle processes are responsible for assuring any

system activities proposed to be performed as part of the software lifecycle.

Evidence of the acceptability, or otherwise, of any data provided by the software
processes to the system processes on which any activity has been conducted by the

system processes. Examples of such activity are the system processes’ evaluations of:

o Derived requirements provided by the software processes to determine if there is

any impact on the system safety assessment (SSA) and system requirements.
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o Issues raised by the software processes with respect to the clarification or

correction of system requirements allocated to software.

Evidence of software verification activities performed by the system lifecycle processes,

if any.
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Figure 28. Interrelationships between DO-178 and ARP 4754

Per DO-178C, as noted with a green dot in Figure 28, the following data may be passed to the

system development processes from the software lifecycle processes:

Details of derived requirements created during the software lifecycle processes.
A description of the software architecture, including software partitioning.
Evidence of system activities performed by the software lifecycle processes, if any.

Problem or change documentation, including problems identified in the system
requirements allocated to software and identified incompatibilities between the hardware

and software.

Any limitations of use.

Configuration identification and any configuration status constraints.
Performance, timing, and accuracy characteristics.

Data to facilitate integration of the software into the system.
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4.1.4 Interrelationships between DO-254 and ARP 4754

Per DO-254 [4], as depicted with a green dot in Figure 29the following data may be passed from

the system development processes to the airborne electronic hardware lifecycle processes:

Design and safety requirements allocated to hardware.

Design assurance level (DAL) for each function, along with associated requirements and

failure conditions, if applicable.
Allocated probabilities and at-risk exposure time for hardware functional failures.
Hardware/software interface description.

Requirements for safety strategies and design constraints, such as testability, design

methods, and hardware architectures.

Requirements for system verification activities to be performed by hardware-level

verification.
Installation, ergonomic, and environmental requirements allocated to hardware.

Integration problem reports that may have impact on requirements. These may arise as a
result of activities, such as system verification, generation of system requirements or
SSA.
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Figure 29. Interrelationships between DO-254 and ARP 4754

Per DO-254 [4], the following data may be passed to the system development processes from

the airborne electronic hardware lifecycle processes:
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4.1.5

Implementation of the requirements, such as mechanical drawings, schematics, and parts

lists.
Hardware-derived requirements that may have an impact on any allocated requirement.
Implementation architecture, including fault containment boundaries.

Evidence of any required system verification and validation activities performed during

the hardware design lifecycle.
Product safety analysis data, such as:

o Probabilities and failure rates for designated hardware functional failures of

concern to the SSA process.
o Common mode fault analysis.
o Isolation boundaries and generic fault mitigation strategies.

o Latency analysis data relevant to system requirements. Examples are hardware

provisions for fault monitoring, fault detection intervals, and undetectable faults.

Requirements for hardware verification activities to be performed by system-level

verification.

Assumptions and analysis methods regarding installation requirements and environmental

conditions necessary for the analyses to be valid.

Problem or change reports that have an impact on system, software, or allocated

hardware requirements.

Interrelationships between DO-178 and DO-254

Per DO-178C, as noted with a green dot in Figure 30, the following data may be passed between

the software and hardware processes:

All requirements, including derived requirements, needed for hardware/software
integration, such as definition of protocols, timing constraints, and addressing schemes

for the interface between hardware and software.
Instances where hardware and software verification activities requiring coordination.

Identified incompatibilities between the hardware and the software.
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Figure 30. Interrelationship between DO-178 and DO-254 [4]

Table 7 identifies the data connectivity between safety, development and design assurance

processes. Any time that there is an interface and/or information flow, the possibility exists for

an error or omission to be introduced. This is one of the reasons why MBSE/MBSA methods are

being considered to improve the integration of the required data for the safety, development, and

design assurance processes. The goal is to use a more integrated data set to help manage the data

connectivity.

Table 7. Data connectivity between safety, development and design assurance processes

classification.
Safety
requirements.
Safety objectives.
Architectural safety
requirements
(derived from
safety analyses).
Item requirements
(derived from
safety analyses).
Separation
requirements.
Verification.

Sends | ARP 4761 ARP 4754A DO-178 DO-254
Data

ARP Failure condition,

4761 effects,
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Sends | ARP 4761 ARP 4754A DO-178 DO-254
Data
ARP Aircraft Systems Design and safety
4754A | functions. requirements requirements
[7] System functions. allocated to allocated to
Systems software. hardware.
architecture. System safety DAL for each
Systems objectives. function, along
implementation. Software level of With'associated
Functional software reqmrementg gnd
Development components and a failure conditions.
Assurance Level description of Allocated
(FDAL). associated failure probabilities and
IDAL. condition(s). at-risk exposure
System time for hardware
description/hardware | functional failures.
definition. Hardware/software
Design constraints. | interface
Details of any description.
system activities Requirements for
proposed to be safety strategies
performed as part of | and design
the software constraints.
lifecycle. Requirements for
Evidence of the system verification
acceptability. activities.
Evidence of Installation,
software verification | €rgonomic and
activities performed | environmental
by the system requirements
lifecycle processes, | allocated to
if any. hardware.
Integration
problem reports.
DO- Details of derived All requirements,
178 requirements including derived

created during the
software lifecycle
processes.

A description of
the software
architecture,
including software
partitioning.

requirements,
needed for
hardware/software
integration, such
as definition of
protocols, timing
constraints, and
addressing
schemes for the
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Sends
Data

ARP 4761

ARP 4754A

DO-178

DO-254

Evidence of system
activities
performed by the
software lifecycle
processes, if any.

Problem or change
documentation,
including problems
identified in the
system
requirements
allocated to
software and
identified
incompatibilities
between the
hardware and
software.

Any limitations of
use.
Configuration
identification and
any configuration
status constraints.
Performance,
timing, and
accuracy
characteristics.
Data to facilitate
integration of the
software into the
system.

interface between
hardware and
software.

Instances where
hardware and
software
verification
activities requiring
coordination.
Identified
incompatibilities
between the
hardware and the
software.

DO-
254 [4]

Implementation of
the requirements.
Hardware derived
requirements.
Implementation
architecture.
Evidence of any
required system
verification and

All requirements,
including derived
requirements,
needed for
hardware/software
integration, such as
definition of
protocols, timing
constraints, and
addressing schemes
for the interface
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Sends | ARP 4761 ARP 4754A DO-178 DO-254

Data
validation between hardware
activities. and software.
Product safety Instances where
analysis data. hardware and
Requirements for software verification
hardware activities requiring
verification coordination.
activities. Identified
Assumptions and incompatibilities
analysis methods | between the
regarding hardware and the
installation software.
requirements and
environmental
conditions.
Problem or change
reports.

4.1.6 DO-297

DO-297 [5] provides guidance on how to do design assurance on an IMA system (as opposed to
traditional federated systems architectures). An IMA architecture provides a set of shared
computing, networking, and input/output resources supporting the computing and system
interface needs for multiple airplane systems. An IMA architecture integrates airplane systems,
such as avionics, display/flight management systems, electrical systems, environmental control
systems, mechanical/hydraulics systems, and many others. The IMA platform is defined and

developed independently from the specific aircraft functions and the hosted applications, making

it possible for the developed IMA platform to be reusable with different sets of hosted

applications.

Per DO-297, the following are key platform characteristics of an IMA architecture:

Platform resources are shared by multiple applications.

An IMA platform provides robust partitioning of shared resources.

An IMA platform only allows hosted applications to interact with the platform and other

hosted applications through well-defined interfaces.

Shared IMA platform resources are configurable.
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Per DO-297, the following are key application characteristics of an IMA architecture:

= An application may be designed independent of other applications and obtain incremental

acceptance on the IMA platform independently of other applications.

= Applications can be integrated onto a platform without unintended interactions with other

hosted applications.
= Applications may be reusable.
= Applications are independently modifiable.

The IMA platform consists of the modules and the connecting infrastructure. The application-
ready IMA platform refers to the means of structuring, connecting and combining modules to
support the requirements of the hosted applications and aircraft functions. The integrated IMA
platform consists of the IMA platform and the hosted applications. The IMA architecture
consists of the IMA platform, connections, and components that satisfy the requirements of all of

the hosted applications and aircraft functions.
The certification process for IMA systems has six incremental tasks, as follows:
= Module acceptance.
= Application software or hardware acceptance.
= [MA system acceptance.
= Aircraft integration of IMA system, including V&V.
= Change of modules or applications.
= Reuse of modules or application.

4.2 Potential process shortcomings (particularly related to
aircraft/system integration and modifications to aircraft or systems)

Systems integration becomes increasingly important as systems architectures evolve from
federated architectures to integrated, distributed systems architectures. Figure 31 shows the same
function implemented by both a federated systems architecture and an IMA architecture. Due to
the significantly lower number of cross-functional interfaces, it is generally easier for a single
designer or team to define, validate, and verify the interfaces for a federated systems
architecture. In addition, it is generally easier for a single designer or team to understand the

failure behavior.
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Figure 31. Federated versus integrated, distributed systems

This is different from integrated, distributed systems architectures in which there are a great
number of cross-functional interfaces and in which there is increased sharing of common
computing and data transmission resources. This increases the importance of conducting systems

integration in early design development phases.

However, existing industry guidance is still generally geared more toward federated systems
architectures than integrated, distributed systems architectures. For example, ARP 4754A [1]
section 4.6.4 Aircraft/System Integration states: “Normally, systems integration begins with item
by item integration and progresses to complete system integration.” This implies that systems
integration occurs on the right hand side of the SE “V.” However, with integrated, distributed
systems architectures, it important to consider systems integration during the early development
stages (the left side of the SE “V™).

As shown in Figure 32, there is a need to have an integrated architecture at the very beginning. It
is important to understand the bigger picture of the puzzle before decomposing into the lower
level (i.e., item level) pieces. Systems integration needs to be “baked in” from the beginning; it

should not start after the items have been developed.
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Figure 32. Required integrated picture

Creating an integrated functional architecture is an approach that can help improve earlier
integration. The functional architecture will be more stable than the logical architecture. Creating

a stable functional architecture will minimize logical architecture rework.

To minimize rework, the aircraft should be functionally and logically integrated prior to detailed
design work (particularly at the item level). They both need to be accomplished and integrated;
the logical architecture alone will not identify what functionality is lost when a component fails

or a signal is interrupted.

As described in Table 7, key outputs of the ARP 4754A [1] processes include the aircraft
functions, the systems-level functions and the systems architecture. These are integral inputs to

the safety processes and the software and hardware design assurance processes.

Establishing an integrated systems architecture (particularly for increasingly integrated,
distributed architectures) is a key factor in helping make sure that there is a complete and correct
set of requirements. This is important for requirements related to the interoperability/integration
between systems (interaction between two or more systems working to implement a higher-level
function). Interoperability/integration is the manner in which these systems are interconnected

and the way each system contributes to the top-level function.

With the increasing level of integration between aircraft functions and the systems that
implement them, one system may impose requirements on other systems (e.g., performance,
design constraints). Other examples include identifying the requirements associated with
maintaining airplane functionality with power transitions (e.g., power up and power down, in-
flight power down and power up, power interruptions, transitions and power quality variations).
If this is not done correctly, it can increase the possibility of a development error related to

systems integration.
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State of the Art

* Integrated systems continually flourish -
complexity continually increases

+ Industry standards (and regulatory guidance) have
not kept pace

* The System Safety community is aware of potential
safety risks if development errors were not
identified and corrected during the development
process.

+ ARP4754A (December 2010) Chapter 4
acknowledges this, but associated guidance is
vague (and very short).

Lessons Learned in Dev Assurance of integrated Systems Federal Aviation 2
Septermber 2011 Agministraton

Figure 33. FAA comment on ARP 4754A [1] systems integration

However, as the FAA has acknowledged (see Figure 33), the “associated guidance is vague (and
very short).”

This is important because DO-178 and DO-254 [4] are predicated on the assumption that the
allocated requirements (see Figure 34) are complete and correct.

Requirements Allocation
4754A Development Assurance

Figure 34. FAA training on ARP 4754A relationship to DO-178/254

Note: There is potential room for improvement in industry guidance related to systems
integration. However, this should not be construed to mean that companies have not taken the

required steps to address systems integration.
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It would help to clarify the three different types of integration, including the required objectives

for each:
= Vertical.
= Horizontal.
= Diagonal.

4.2.1 Vertical integration

Vertical traceability, as shown in Figure 35, exists within each hierarchy (requirement,
functional, logical, and physical). Going from higher level to lower levels within a hierarchy is
usually referred to as decomposition. The purpose of the vertical integration analysis is to ensure

that:
= The lower level supports the higher level.
= There is traceability.

= Totality of the different levels are complete, consistent, and correct within the

architecture (e.g., within requirements architecture).
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Figure 35. Vertical integration

o4

4.2.2 Horizontal integration

Horizontal allocation/traceability, as shown in Figure 36, exists at each tier level (e.g., aircraft,

system, or item). Going from architecture to architecture at the same tier level is usually referred

51



to as allocation (e.g., requirements allocation, functional allocation). The purpose of the

horizontal integration analysis is to ensure the following:
= There is an integrated product architecture at each tier level:

o Requirements completeness (e.g., missing requirements at the aircraft level,
clarity of cumulative airplane-level requirements).

o Functional completeness.
o Logical completeness.

= Totality of the requirements, functional and logical architectures are complete, consistent
and correct at a given tier level (e.g., at the aircraft level).

= In an ideal world, this work would be completed prior to moving to the lower level tiers

(for example, you would have an integrated airplane product architecture before moving

to the system level).
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Figure 36. Horizontal integration

4.2.3 Diagonal integration

Diagonal allocation/traceability, as shown in Figure 37, goes from one tier level to a lower tier
level (e.g., from aircraft to systems). Going from the logical architecture at one tier level to the

requirements architecture at a lower tier level is usually referred to as derived.
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Figure 37. Diagonal integration

Derived requirements are additional requirements resulting from design or implementation
decisions during the development process, which are not directly traceable to higher-level

requirements.

Derived requirements stemming from technology, architecture, system and item interfaces, or
implementation choices become more clearly visible, as work on the system architecture
progresses. At each phase of the development activity, decisions are made as to how particular
requirements or groups of requirements are to be met. The consequences of these design choices
become requirements for the next phase of the development. Since these requirements result
from the design process itself, they may not be uniquely related to a higher-level requirement and
are referred to as derived requirements.

Note: These architectural decisions were made as part of the horizontal integration at the higher

tier level.

Derived requirements should be examined to determine which aircraft-level function (or
functions) they support so that the appropriate Failure Condition classification can be assigned
and the requirement validated. While derived requirements will not impact the higher-level
requirements, some may have implications at higher levels. Derived requirements should be
reviewed from a safety perspective at progressively higher system levels, until it is determined
that no further impact is propagated.

Examples of derived requirements include:

* Derived requirements may result from the decision to select a separate power supply for

equipment performing a specific function. The requirements for the power supply,
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including the safety requirements, are derived requirements. The failure condition
resulting from the fault or failure of the function supported by the power supply

determines the necessary development assurance level.

= Derived requirements may also result from architecture choices. For example, selecting a
triplex architecture for achieving a high integrity functional objective would have
different consequences and different derived requirements from selection of a dual

monitored architecture for achievement of the same objective.

Derived requirements may result from a design decision to isolate function implementations
having more severe Failure Condition classifications from the failure effects of systems having

less severe Failure Condition classifications.

Derived requirements also include those defining the hardware-software interface. Some of these
requirements may be significant at the system level. The remainder, dealing with detailed aspects
of the hardware-software interface, may be handled under the guidance of DO-178/ED-12 and
DO-254 [4]/ED-80.

4.2.4 Modifications to aircraft/system

Section 6 of ARP 4754A [1] addresses modifications to the aircraft or systems. Aircraft projects
typically involve a mixture of new, modified, and reused systems. It is rare for an aircraft project
to be a completely “clean sheet.” Section 6 of ARP 4754 A includes the following:

» Introducing a new aircraft-level function.

= Replacing an item or system with another on an existing aircraft.
= Adapting an existing item or system to a different aircraft type.

= Modification to an item or system without adding a function.

= Supplemental Type Certificate (STC) production introduction.

However, ARP 4754A does not clearly communicate which of the development assurance
processes need to be conducted and which development assurance artifacts need to be
created/updated, depending on the type and scope of the project. It would be beneficial to have a
consistent determination process, based on the scope of the change, to identify which of the

following processes (and their associated artifacts) need to be accomplished:
= Requirements management.

= Safety assessment process.
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= Requirements validation.

* Implementation verification.
= Configuration management.
* Process assurance.

This determination process should involve consideration of certification basis, system similarity,
and system complexity to identify the appropriate techniques to apply to the system(s) for the

aircraft’s development.

4.3 Integral systems integration processes (potential process gaps
related to safety)

ARP 4754A [1] identifies that the following should be considered during a modification impact
analysis (which would typically be captured as part of the requirements, functional or logical

architectures):

= Safety related information is changed; for example:
o Failure condition classification(s) changed or added.
o Development assurance level.
o Safety margins are reduced.
o Architectural assumptions.
o Validity of the environmental qualification test results is affected.
o V&V methods or procedures are modified.

= QOperational or procedural characteristics are changed; for example:
o Aircraft operational or airworthiness characteristics.
o Flight crew procedures.
o Increased pilot workload.
o Situational awareness, warnings, cautions, or advisories.

o Displayed information to make flight decisions.
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However, improvements to industry guidance could be made by also including considerations of
change impact to the physical architecture. For example, it would it be beneficial to also

consider:

= Integration of functional/logical architectures and the physical architectures are

maintained.

= Physical location of equipment in threat zones does not violate required functional

independence, redundancy, for example.

= Appropriate physical separation is maintained (e.g., three redundant systems are located
in the same threat zone or unacceptable loss of downstream systems functionality because

upstream systems were not properly separated).

Figure 38 shows the integration of the logical and physical to assess safety impact.

Birdstrike
Rotor burst

Figure 38. Integrating logical and physical to assess safety impact

It is admittedly extremely unlikely that a designer would put the three redundant systems in the
same threat zone. However, as airplanes become more integrated, there can be unacceptable
cascading failure effects that might not be immediately apparent by just looking at the initial
source of failure (e.g., equipment in the threat zone). Integrating the physical architecture with
the requirements/functional/logical architectures can help adequate safety be maintained during

modification impact analysis.
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It would be beneficial to emphasize that modifications should consider potential impacts to
Particular Risk Assessments (PRA) or Zonal Safety Analysis (ZSA).

The unreleased ARP 4761A will have a new appendix related to “Cascading Effects Analysis,”
which is a qualitative, bottom-up analysis method that evaluates an initiating condition (e.g., a
failure condition, failure mode, or combination of failure modes) and captures the total effect on
the aircraft for that initiating condition.

Figure 39 is a simplified diagram that shows the results of the cascading failure effects of
electrical component failures. The safety analysis needs to look at the cumulative effects of all
systems-level effects. For a highly integrated, distributed systems architecture, it is possible for
the cumulative effect of acceptable systems-level effects (acceptable systems-level effect due to

loss of functionality or loss of redundancy) to be catastrophic at the airplane level.

Note: This example below is for illustrative purposes only; aircraft systems would not be

designed and certified this way.

Loss of Normal
—»{ Landing Gear ==
Extend

Loss of Center

Hydraulics
Loss of
Equipment

Cooling

Loss of Landing
Gear Extension
Without

Indication
Loss of Electrical o Lossof Electrical Instrument :::::'V Loss of Engine Indication
Components Buses . and Crew Alerting System
Displays g Sys
Loss of Hot Battery Bus after Main Loss of
3 o=y Alternate Extend
Battery Discharges (after certain time = -
~Landing Gear
frame)
(backup)

Figure 39. Unacceptable, cumulative cascading failure effects

Similarly, it is important to evaluate the stack-up of degradation in each of the airplane-level
functions to determine the overall airplane-level hazard categorization (as shown in Figure 40).
Similar to the example above (in which the cumulative effect of acceptable systems-level effects
can be catastrophic at the airplane level), it is possible that the cumulative effect of each

acceptable airplane-level function may not be acceptable at the airplane level.
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Airplane Level Function

Airplane Level Function

Airplane Level Function

Airplane Level FHA

Airplane level function
without specific systems
architecture allocation

Airplane Level FHA

Airplane level function
without specific systems
architecture

Airplane Level FHA

Airplane level function
without specific systems
architecture

and required pilot procedures

Cascading Effects Analysis

* Validate each of the airplane level functions can still be adequately performed

* Failures of specific systems architecture to determine cascading systems-level and airplane-level functional effects, flight deck indications,

Figure 40. Cascading effects analysis — multi-airplane-level function assessment

The following example shows how this can occur, using the airplane-level functions in Figure

41. Consider a failure that results in the following:

= Floating flight controls surfaces (impacting “Control Lift and Drag”).

= Loss of cabin depressurization (impacting “Pressurization”).

= Loss of wing ice protection (impacting “Emergency Prevention & Management”).

Airplane Level Functions
1. Provide Provide 6. Provide Power 7. Provide Loading,
Structural Controlinthe Generation & Maintenance, Ground
Integrity Air Distribution Handling & Occupant
| Accommodation
2. Provide 3. Provide 4. Provide 5.Provide a 8. Provide
Stability & Control of Operational Controlled Control on the
Control Energy Awareness Environment Ground
J J J J J
—{ Control Ptch | —{ Control Thrust| Stuational Control
Awareness: | Temperature Conirol Speed
|| Primary Flight
—_ControlRoll | | | Cort&oluns Data Display
[ , = | [Soamecato] | | oroumoe | - [TorteOrected
Control Yaw & Navigation H— Ervvir
Fiight Control Awereness of Landing Gear
| Augmentation | Emergency —{ Pressurzation] ~ | Extension &
Retraction
Automatic P_’m Configuration Emergency
| Control & L| Prevention &
Guidance _{W] Manage ment

Figure 41. Airplane-level functions

58




In this hypothetical scenario, it is possible for there to be an unacceptable drag count due to

increased drag after descending to 10,000 feet (as a result of the decompression), floating spoiler

pairs, and potential ice accumulation on the wing (if unable to avoid icing conditions). The

increased drag count could preclude the airplane from reaching a suitable airport. Although this

example is partially due to the structure of the airplane functional decomposition, the point is still

warranted. Other airplane-level functional decompositions with different structures could

similarly result in the cumulative effect of each acceptable individual airplane-level function

being unacceptable.

In addition, ARP 4761 could further expand on the human-crew interface to help evaluate that

the crew workload is acceptable. Figure 42 is based on material in the Arsenal version of
AC/AMJ 25.1309. Three items need to be considered in assessing the overall effect:

= Effect on the airplane.

= Effect on occupants.

= Effect on flight crew.

Classification of Failure Conditions
No Safety Effect Minor Major Hazardous Catastrophic
- eﬂ‘gct on Slight reduction in Significant reductionin  |Large reduction in . .
Effecton |operational = . = e = ... |Normally with hull
. - functional capabilities |functional capabilities or |functional capabilities ’
Airplane  |capabilities or N : loss
- or safety margins safety margins or safety margins
Effect on Serious or fatal injury
a . . . Physical distress, ibly |to a small number of , ..
Occup'\_n * ltaconvenience Physical discomfort - 15ress, possivy ° " : Multiple fatalities
(excluding : including injuries passengers or cabin
Flight Crew) crew
. Physical distress or
Ph 1 discomfort -
Effecton  |No effect on flight |Slight increase in e ' [excessive workload Fatalities or
. : = N significant increase in : . s .
Flight Crew |crew workload workload impairs ability to incapacitation
perform tasks
Probability ~ 1E-05 or less ~ 1E-07 or less ~ 1E-09 or less

Figure 42. Hazard category classifications

It would be helpful if ARP 4761 provided additional guidance on assessing the interactions

between the flight crew and systems in the presence of failures. While this is less important for

federated systems architectures, it becomes more important for integrated, distributed

architectures, in which many systems functions that were typically separated with limited

interdependence are now interrelated and highly integrated. It is important to validate that the

flight crew will have sufficient remaining functionality to cope with failures. Considerations

could include:
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= Validate the flight crew has the required system functionality to address the failure (e.g.,

cursor control device is available to take required actions).
= Validate the flight crew has the ability to view all messages (e.g., page control).

= Validate that adequate messages are displayed for airplane system and operational

awarencss.

= Validate that the crew procedures associated with messages adequately address safety

concerns.

= Validate that the crew procedures do not provide conflicting direction (e.g., one

procedure states to maintain altitude, another procedure states to descend immediately).

These types of flight crew-systems interaction considerations could be made during the

Cascading Effects Analyses.

4.4 Potential common errors in interrelationships between industry
standards

Figure 43 identifies the interrelationships between the safety, development assurance, and
software/hardware design assurance processes. Similar to managing the interfaces during the
design of an actual product, it is also important to manage the process interfaces. One of the key

interrelationships are between the safety and the development assurance processes.

Aircraft functions
*  System functions
Systems architecture
Systems implementation
Functional Development Assurance Level (FDAL)

* Item Development Assurance Level (IDAL)
Development — Safety
Assurance Processes
(ARP4754) (ARP4761)

* Failure condition, effects, classification
Safety requirements
Safety objectives
Architectural safety requirements (derived from safety analyses)
Item requirements (derived from safety analyses)
Separation requirements
Verification

—

Figure 43. Safety and development assurance interfaces
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If the functions are not captured during the development assurance process, potential failure
conditions and hazard categories will not be assigned during the safety processes. As a result,

this increases the risk that the DALs may not be correct.

Figure 44 shows the critical interrelationships between the airplane and systems development

assurance processes and the software/hardware design assurance processes, which include:
= Systems architecture.

= Allocated requirements (to software and hardware).

Design and safety requirements allocated to software/hardware
FDAL/IDAL

System description

Design constraints

Problem reports

Development — Software and

Assurance . _ ‘ Hardware
(ARP4754) o Detal!s gf derived requxreme'nts . . Design
* Description of software architecture (including
software partitioning) Assurance
Implementation architecture (hardware) Processes
Performance, timing and accuracy (00-178)
characteristics
(DO-254)

Requirements for software or hardware
verification activities
Problem reports

—

Figure 44. Development and design assurance interfaces

The software and hardware design assurance processes are assumed to start with a complete and
correct set of allocated requirements. No one intentionally has incomplete or incorrect
requirements. SAE ARP 4754 [7] acknowledged it is virtually impossible to validate
requirements are complete and correct for complex systems. Subsequent sections will evaluate
how modeling can potentially improve the quality of the requirements. Models can potentially

address some of the limitations of text-based requirements.

4.5 DO-331 (development and verification supplement for DO-178C
and DO-278A)

DO-331 [6] was published in 2011 as a supplement to DO-178C and must be met for model-
based software development processes. Per DO-331, regardless of where the model development
started (i.e., system or software domain), guidance of DO-331 will apply. This implies that
systems must meet both the ARP 4754A [1] and several DO-331 objectives. It would be helpful
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to clarify these boundaries so that design teams can coordinate and plan to meet the two

standards efficiently, without duplicating systems and software team efforts.

4.6

Modeling standards

Unified Modeling Language (UML) and Systems Modeling Language (SysML) are language

specifications (which is different from a modeling specification).

UML is used in software engineering as a way to provide visualization of a system’s design.

UML diagrams (as pictured in Figure 45) have two different views of a system model:

= Behavior (used to describe the functionality).

= Structure (used to document the software architecture).

Diagram

[

|

Structure Behavior
Diagram Diagram
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Csot:] 2 :)us:;e Deployment Package Interaction State Machine
Diagram Diagram Diagram Diagram Diagram Diagram
Sequence Communication Ig'er?f,l'on Timing
Notation: UML | Diagram Diagram verview Diagram
Diagram

Figure 45. UML diagrams

SysML is a graphical modeling language for SE applications. Per the Object Management Group

(OMGQG), SysML is a general-purpose graphical modeling language for specifying, analyzing,

designing, and verifying complex systems that may include hardware, software, information,

personnel, procedures, and facilities. In particular, the language provides graphical

representations with a semantic foundation for modeling system requirements, behavior,

structure, and parametrics, which are used to integrate with other engineering analysis models.
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5 Process execution

This section of the report focuses on the assessment of the current guidance and standards for
IMA, DIMA, and other distributed system architectures. Table 8 describes the approach to

address these research objectives.

Table 8. Current guidance and research approach

Research
Objectives

Detailed Work Description

Assess current
guidance and
standards when
Integrated Modular
Avionics (IMA)
systems, Distributed
Integrated Modular
Avionics (DIMA)
systems, and other
distributed systems
and architectures.

Conduct analysis on process execution problems:

Survey Boeing’s Subject Matter Experts, including those who have
work experiences as Authorized Representative (AR) Advisors and
ARs. The SMEs will have experiences across multiple programs,
multiple design disciplines and multiple suppliers.

Identify potential gaps in the development/design assurance processes
for development programs (which is addressed by ARP 4754A [1]).
Assess frameworks for highly integrated, distributed platform systems.
Identify gaps in existing V&V processes for highly integrated,
distributed platform systems.

Analyze integration related problem reports and determine root causes.
Investigate how a potential use of virtualization, design of experiments,
and distributed test could mitigate integration and safety issues for
process execution problems.

5.1

Process execution feedback

For the past decade, Boeing has worked on:

= Development assurance on multiple development programs.

= Planning documents that identify the development assurance activities that will take place

when implementing production-type design changes after the initial Type Certificate
(TC) or Amended Type Certificate (ATC) has been issued.

= The SAE S-18 committee responsible for ARP 4754A [1].

= Development of Aerospace Information Report (AIR) 6110, Contiguous Aircraft/System

Development Process Example, which provides a contiguous example of the design
development process and shows the relationships between ARP 4754A and ARP 4761.

These activities have resulted in gaining experiences related to the theory of development

assurance, its application throughout industry, and any potential differences.
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Interviews were conducted with SMEs with the following development and design assurance

experiences:
= Software (those with experience as ARs).
= AEH (those with experience as ARs).
= Boeing enterprise designated experts in requirements management.
= Flight test.

It is of significant value that highly experienced engineers are able to provide feedback on real-
world occurrences of development/design assurance. This includes understanding the operational
aircraft/system impacts that may be based on requirements issues; it includes understanding the
processes, tools, and techniques used. The SMEs collectively have significant experiences

applying the following:
= ARP4754A [7]].

= ARP 4761 [2].

= DO-178 [3].
= DO0-254 [4].
= DO-297 [5].
= DO-331 [6].

5.2 Potential gaps in industry development/design assurance processes

Based on experiences conducting development assurance on multiple programs and discussions
with development assurance SMEs, a consistent theme was the importance of a complete and
correct set of requirements. There is always risk for late changes when any of the following

occur:
* Incomplete requirements.
= Incorrect requirements.
=  Missing requirements.

For DIMA architectures, these requirement errors or omissions can occur if the development

assurance plans and activities do not consider the integrated nature of the systems architecture.

64



It should be noted that ARP 4754A [1] does not explicitly mention Interface Control Document
(ICD), Aircraft Systems Integration Plan, or Systems Integration Plan. AIR 6218, Constructing
Development Assurance Plan for Integrated Systems, discusses the importance of developing an
integrated approach as early as the planning phase of the development assurance activity.
However, it does not provide a framework for doing some of the critical integration activities.

These are potential areas of improvement in industry guidance.

5.3 Frameworks for highly integrated, distributed platforms

As discussed in section 4.2, the FAA has acknowledged that the systems integration guidance in
ARP 4754A [1] is “short and ambiguous” (reference Figure 33).

In order to ensure a complete and correct set of requirements, it is important to have a framework
for highly integrated, distributed systems. To address this, the research first focused on the
required integration activities. It is critical to understand how a system is supposed to behave and

ensure that it will work with interfacing systems. The following objectives need to be addressed:
= System architecture is complete, accurate, necessary, and sufficient.
= Potential discrepancies have been identified and addressed.

It is important to recognize the inherently iterative nature of development. There are different
levels of abstraction that are required at different time frames. In addition, some systems have
longer lead times than others do. Some data can and should be captured as soon as possible, but
other data (e.g., detailed Built-In Test Equipment [BITE] reports) cannot be fully defined and
validated until lower level design is underway. There does not appear to be an existing
framework to show how to achieve this incremental, recursive integration, particularly for

integrated, distributed systems architectures.

Figure 46 provides a framework to help address the incremental, iterative aspects of integration.

65



System B

System A

Parameters& | © :
. I Transport

LRUs are A i Physical i Transport i i Physical Logical : 1| parameters &
developed » Messages are t Logical Ports | o Ports are » Eloments 4 & D:( beii Ports are . Ports are i Messages arel LRUs are
developed | & 3| aredefined defined i defined ements ] : developed
J e 3 | | J ik aredefined | :

:| aredefined | :i| defined | defined |i : | developed |

]

Direction of work flow Direction of work flow

Figure 46. Cross-functional integration for a federated system

The first step, as shown in Figure 47, is the incremental architecture development. This includes

the following steps:
= Architecture Definitions and Usages.

o Validate that the hardware/software definitions that compromise your system are

complete, accurate, and sufficient (e.g., Air Data Module exists).

o Validate that the number of “usages” to meet redundancy and other architectural
considerations are complete, accurate, sufficient, and necessary (e.g., Air Data
Module-Left, Air Data Module-Center, and Air Data Module-Right are accurately
captured). The number of usages needs to be consistent with the required

redundancy management, reliability, availability, for example.
= System Interface Matrices.

o Validate the subsystems that are publishing to your system (publishing systems)

(i.e., you are receiving correct inputs from the correct subsystems).

o Validate the subsystems that are subscribing to your system (subscribing systems)

(i.e., you are providing the required outputs needed by other systems).
o Validate the number of parameters in the system interface matrices:
= Identify and resolve:
= Under subscription.

= Qver subscription.
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= Incorrect subscription.

System A SystemB
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A lements | i
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Ports are
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B Logical Ports | |
: :| aredefined

Direction of work flow Direction of work flow

Figure 47. System architecture and system interfaces
The next incremental step, as shown in Figure 48, is the logical and physical port definition and

development.

System A SystemB

: x 3: Transport
x

: ::| Elements

:1|_are defined

<&

8

Direction of work flow Direction of work flow

Figure 48. Logical and physical port definition and development
The logical ports should be defined (e.g., analog port, Controller Area Network [CAN] port).
Some logical ports are only supported by certain physical ports. Physical ports are system and

interface dependent. Examples include CAN Physical Port, Analog Physical Input Port, Analog
Physical Bidirectional Port, and Analog Physical Output Port.

The next incremental step, as shown in Figure 49, is the definition of the transport elements (e.g.,

wiring).
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Figure 49. Transport elements defined

If this were a federated system, it would be sufficient to accomplish the following:
= Validate completeness, sufficiency, and accuracy of systems architecture.
= Validate that each system is providing what is required by other systems.
= Validate that each system is receiving what is needed (from the correct system).

= Validate that the parameters, logical ports, physical ports, and dataset and messages are

complete and correct.

However, with DIMA architectures, additional integration activities need to occur. Section

4.2described the integration between federated systems, as shown in Figure 50.
= Integration of LRU 3 from System X with LRU 1 from System Y.

= Integration of LRU 2 from System X with LRU 2 from System Y.
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Figure 50. DIMA integration framework

Because of the DIMA architecture, a system-to-platform analysis (including platform interfaces,

redundancy, source preference, indicators, and separation) also needs to occur:

= System to Integrated Modular Avionics Platform Analysis.

o Scenario 1: System hosted on a General Processing Module (GPM).

o Scenario 2: Systems communicating directly to Common Data Network (CDN).

o Scenario 3: System communicating across CDN via Remote Data Concentrator

(RDC).

= Redundancy, Separation, and Control.

o Failure Modes and Effects.
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o Additional Considerations

In addition, the framework, as shown in Figure 51, can include the integration of the analysis and

test activities.

= Scenario 1: System hosted on a GPM.

= Scenario 2: System communicating directly to CDN.

= Scenario 3: System communicating across CDN via RDC.

*  Minimum required resources to sustain functionality.

=  Maximum configuration analysis.

*  Minimum Equipment List (MEL) considerations.

Hosted Functions

System architecture complete
Providing what others need
Receiving what you need

M

Analysis

|

IMA/DIMA

Providing required resources:
* Computing
* Input/output
* Network

5.4 Potential gaps in existing V&V processes for highly integrated,

Validation

N

' 4

Integrated Tests

Verify hosted function and IMA
resultin required system /
airplane performance

Verification

Figure 51. Hosted functions and IMA integration (V&V)

distributed platform systems

Section 4.2 identified potential process shortcomings (particularly related to aircraft/system

integration and modifications to aircraft or systems). The sections below identify other potential

gaps related to development/design assurance processes.
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5.4.1 Cross functional interfaces and safety

It is important to consider potential impacts of more highly integrated architectures on safety.

For example, an intra-system analysis would need to contain a detailed analysis of behavior and

performance with failures (internal failures or external inputs). The safety Failure Modes and
Effects Analysis (FMEA) will identify the internal system failure modes and summarize the

local, system and airplane effects. Figure 52 shows the interrelationships that can be considered

between interface management and safety activities.
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Figure 52. Integration and safety activities

5.4.2 Cascading failure effects considerations

The to-be-released version of ARP 4761 Rev A contains Appendix O, Cascade Effects Analysis

(CEA). It describes a qualitative, bottom-up analysis method that evaluates an initiating

condition (e.g., a failure condition, failure mode, or combination of failure modes) and captures

the total effect on the aircraft for that initiating condition.

Per the to-be-released version, CEA can be used to:

= Determine the effects of resource system failure conditions as part of the Airplane

Functional Hazard Assessment (AFHA) or System Functional Hazard Assessment

(SFHA).

= Determine the effects of resource system failure modes or combinations of resource

system failure modes as part of the PASA.
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= Determine the effects of shared or integrated item failure modes as part of the PSSA.

= Determine the effects of loss of function or malfunction of a shared or integrated
component containing software or airborne electronic hardware as part of the IDAL
assignment in the PSSA.

= Determine the effects of failure or damage scenarios identified as part of the PRA or
ZSA.

The addition of Appendix O in ARP 4761A provides a method to help with airplane-level

assessment of equipment failures, including:
* Primary failure effect on a system.
= (Cascaded failure effects on other systems.
= Flight-deck effects.
= Crew actions.
= Validating each of the airplane-level functions can still be performed.

= Validating airplane-level hazard categorizations are acceptable, based on failure

probability (25.1309 compliance).

While this is beneficial, based on experiences gained for conducting airplane-level cascading
effects analyses on multiple development programs over 20 years, the area in the following

section warrants emphasis for highly integrated, distributed systems architectures.

Number of Cascading Failure Effects

For highly integrated, distributed architectures, it is important to emphasize that the CEA should
be evaluated until there are no further effects on system or airplane-level functions. The analyses
should not stop at a preordained level of cascading effects (for example, stop after second-order
effects).

As shown in Figure 53, it is also important to look for combination of effects that create

additional cascading effects.
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Figure 53. Cascading failure effects

5.4.3 Resource Assurance Analysis

It is important to ensure that the DALSs are assigned correctly, which is more straightforward for
federated systems architectures. For highly integrated, distributed systems architectures, it can be
beneficial to conduct a bottom-up confirmation that the functions of one DAL are not adversely
affected by functions of a lesser DAL, and where it does, that there is a documented rationale on
why that approach is acceptable (as shown in Figure 54). This can help preclude late and
unplanned surprises to ensure that the analysis and design considered the integrated effects of

failures at the airplane level, not just at the system-by-system level.

DAL Level A
System
DAL Level A
—»  System
DAL levelC ¥
System 1. ldentify
2. Analyze
3. Disposition

Figure 54. DAL validation for integrated architectures

For highly integrated, distributed systems, it would be beneficial to identify cases in which the
DAL from a publishing system is less than the DAL of a subscribing system. Three key steps to
assist with this analysis include:

* Identification and validation of the DAL levels.
= DAL analysis to validate that it supports the systems’ required integrity and quality.

= Identification and disposition of discrepancies.
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The disposition (justifying based on redundancy, architectural change, for example) should be

captured. The Resource Assurance Analysis (RAA) should consider erroneous or degraded data

or loss of function that could result from common modes to ensure that the assurance levels are

commensurate with the DAL of the interface.

The RAA addresses assurance levels derived from hazard criticality, including:

Systems DALs per SAE ARP 4754A [7].
Software DALs per RTCA/DO-178B [3].

Hardware (Application Specific Integrated Circuits [ASIC]/Programmable Logic Devices
[PLD]) DALs per DO-254 [4].

High Intensity Radiated Field (HIRF)/lightning protection levels.

For highly integrated, distributed architectures, this analysis helps validate the DAL levels.

5.4.4 DIMA considerations

For highly integrated, distributed systems architectures, the following should be considered

during development and design assurance:

Partial or complete failure of an IMA system, causing significant cascading failure effects

on numerous aircraft functions.
Uncommanded and inappropriate display reversions.

Instances of simple failures (generator or engine loss), which could have a significant
failure effect: disruption of power to a portion of the IMA architecture and loss of all

displays on one side of the cockpit.
Complete loss of electronic checklist (ECL) capability under certain failure scenarios.

ECL not robust enough to deal with certain complex, multiple-system cascading failure

scenarios.

Generation of unnecessary checklists in the ECL system during cascading failure
scenarios, which could add to crew workload; often, each unnecessary ECL had to be

either individually worked or individually overridden.

Failure of single elements of the electrical power distribution architecture potentially
causing wholesale loss of sensor or system information and the removal of such

information from the systems synoptic.
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The time frame for the analyzed problem reports covered multiple years and included individual
component testing, integrated laboratory integration, systems integration lab testing, airplane
ground testing, and airplane flight testing. As expected for airplanes with increasing software (as
shown in Figure 55), the majority of the problem reports were related to software (as opposed to
hardware).

Software and Hardware Fixes

&

w Hardware fix = Software fix

Figure 55. Breakdown of software and hardware fixes

Integration, as shown in Figure 56, occurs both horizontally and vertically and at different levels.
Subsystem .

/ System
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Figure 56. Multi-level horizontal and vertical integration

Figure 57 shows the results of an analysis of problem reports/design changes for the time frames
when they generally occur. In the early phases of the design, there are changes to the number and
types of equipment, as trade studies are conducted. As the design becomes progressively more
detailed, the changes to the equipment become much less frequent. However, due the recursive,
iterative nature of design, changes still occur to the lower levels design details (e.g., updating

sampling port rates, adjusting transmit intervals from 50 ms to 45 ms).
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Figure 57. Types of changes over time

5.5 Virtualization, design of experiments, and distributed test

A universal goal is to minimize the number of problem reports that are discovered late in a
program, which has an adverse effect on cost and schedule. This is particularly true for problem
reports identified during flight testing. To fully verify and validate the development lifecycle,
MBSE, MBSA, and MBD can be complemented by an early integration with T&E, and V&V

activities.

This early integration requires T&E and SE staff to collaborate in developing verification and
validation requirements, as well as defining test approaches that fully address complex systems
and SoS in a manageable and efficient manner. This includes helping to ensure the system
concepts, requirements, architectures, designs, and operations are valid, feasible, affordable,
producible, and testable. Ultimately, this mitigates risks earlier in the development lifecycle,
reduces costs, and shortens the time to operational readiness.

Methods, such as virtualization, provide the capability to improve requirements quality, expedite
test and integration on the hardware, and enable verification through a virtual Systems
Integration Laboratory (SIL).

These activities can help minimize the likelihood of errors first being discovered on the airplane
during flight test. Table 9 categorizes the different types of problem reports that can be
encountered during a flight test program.
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Table 9. Analysis of flight test problem reports

Category Sub-Category Description
Possible to Lab/Simulation | Lab and simulation configuration did not have sufficient
identify in lab | Fidelity fidelity to identify the problem.
Test Plan Test case or specific conditions were not in the lab test
plan.

Test Procedure Test procedure was incorrect or did not provide enough
information on expected results.

Simulation error | Error in simulation requirements or implementation.

Existing Lab PR | Problem Report (PR) was identified in the lab, but
squawked on airplane (no paperwork or test crew wasn’t
aware).

Airplane testing specific Specific to the airplane test configuration, problem
specific to airplane test setup issue.

Per Design (i.e., not a problem) Test personnel familiarity with design, understanding of
requirements, for example.

Root cause under investigation PR is still under investigation.

It is important to emphasize that the overwhelming majority of the PRs are identified and fixed
during lab testing (prior to airplane testing). It is equally important to emphasize that this is not a
safety issue; it is more a matter of identifying and fixing problems earlier in the lifecycle.

Problem reports should be evaluated for their potential impact to safety and certification.

The goal is to be able, to the maximum extent possible, identify and fix problems prior to flight
test. If the problem is caught in requirements instead of lab test, it is a 10:1 savings. If a problem
is caught in lab test instead of flight test, it is a 10:1 savings. Having complete and correct
requirements can mitigate two orders of magnitude of cost savings. It is these potential

improvements that have generated interest in virtualization and other model-based activities.

5.5.1 Virtualization

Virtualization technologies allow for high-fidelity representations of aircraft systems to be
created early in the product development lifecycle. Virtualization is the creation of a software
emulation of hardware/equipment. This environment provides output responses that match the
real signal paths and behaviors. Virtualization technologies execute the unmodified target
software executable in a virtual machine (VM), and this approach can even be accomplished

with processor emulation in the VM to accommodate different processor types.
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As shown in Figure 58, advancements are being made to increase the fidelity of aircraft system
simulations, using emulated hardware in VMs that match actual avionics. The higher fidelity
VMs create a much smaller fidelity gap between the virtual world and the physical world. This
high-fidelity virtual world enables problems to be caught early and extracted when the cost to

extract these problems are often orders of magnitude that are less expensive to remove.
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Figure 58. Early identification with virtualization

As presented in Figure 59, virtualization is an emerging technology that provides capabilities to
facilitate early evaluation of requirements at both component (line-replaceable module
[LRM]/line-replaceable unit [LRU]) and integration levels. Depending on the fidelity or the
virtualization construct, the early evaluation could be used to facilitate validation of requirement

content, to be followed by verification of actual requirements.
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Figure 59. LRU virtualization
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5.5.2 Design of experiments

Another key methodology in managing verification of complex systems is Design of
Experiments (DOE). DOE can potentially be the single largest Return on Investment (ROI)
factor on a program. DOE methods ensure the appropriate amount of testing is being conducted.
DOE is a statistical method to determine the relationship between factors affecting a process and
the output of that process. The use of DOE can yield test screening and samplings at a
confidence level of 99% for the Mean and 95% for the standard deviation. DOE can
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mathematically confirm the interactions and independence of input factors. More importantly,

DOE can help ensure repeatability and reproducibility in complex SoS designs.

5.5.3 Distributed/interoperability test

The Distributed Test capability enables the test of interoperability attributes and performance
characteristics of complex, networked SoS. As the complexity of open architecture, networked
systems increases, the importance of developing and validating these systems increases, as the
system elements are developed and tested in disparate locations with varying requirements,

program milestones, and system maturity.

Distributed Test is a tool that can manage this increased complexity in a cost-effective manner
by accelerating collaboration and decision making when SMEs are not co-located. Distributed
Test can be used to connect assets, thus avoiding the need to duplicate these assets at a single
site. Distributed Test can be used to mitigate integration and safety issues for process execution
problems.

Significant benefits can be achieved when T&E and SE jointly participate in developing
verification and validation requirements, particularly in defining test approaches that are
appropriate to integration, verification, and validation. This includes helping to ensure the system
concepts, requirements, architectures, designs, and operations are valid, feasible, affordable,
producible, and testable. Ultimately, this helps programs identify and mitigate risks earlier in the

product lifecycle, decrease risks and costs, and shorten the time to operational readiness.

Interoperability testing focuses on the importance of multiple elements (components,
subsystems, platforms, and/or SoS) operating an integrated fashion, hereto referred to as
“interoperability.” Test planning should include interoperability considerations, for example,

possible development cycles/spirals, depending on program or project size and complexity.

At the top level, interoperability testing ensures the ability of systems to operate together and/or
exchange information in the same environment, without disrupting any participant’s ability to

perform its intended, independent function.

Interoperability test is the ability of a system of interest (SoS, systems, platforms, subsystems,
components, and environments [e.g., units, forces, atmospheric conditions]) to interact with all
aspects of the test system (e.g., physical interfaces, environmental conditions, command, people
[e.g., semantics, understanding], power, and data [e.g., processes, security, data sharing]) and
accept the same from the other components of the systems of interest to enable them to operate

effectively together. Interoperability test includes both the technical exchange of information and
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the end-to-end operational effectiveness of that exchanged information, as required for
regulatory and operational requirements. Interoperability testing should consider the level of
standards compliance of existing implementations, as well as new systems to be incorporated. To
achieve maximum benefit, interoperability testing can be performed in the most operationally
realistic environment possible, and can determine if the system of interest conforms to applicable

standards and ensures that data collected are adequate for evaluating interoperability issues.

Leveraging Live, Virtual, Constructive (LVC) also enables the injection of mission-based
scenarios and relevant faults into the system to evaluate the resultant system performance and
emergent behaviors. The earlier the LVC test is utilized, the earlier the refinement of the concept
of operations (CONOPS), concepts, requirements and design, and integration of the system can
occur. As the system and the LVC environments mature, the potential risks, issues, and defects
from future verification and validation test events will have been wrung out long before the real

system is actually integrated and tested.

It is recommended that LVC testing be investigated as a potential mitigation of integration and

safety issues for process execution problems.

6 Issues, challenges, and gaps in current standards/guidance

This research assesses the potential issues, challenges, and gaps in the current standards and

guidance. Table 10 describes the approach to address these research objectives.

Table 10. Potential issues, challenges, and gaps

Research Objectives | Detailed Work Description

Identify the issues, Identify potential safety issues related to verification and validation
challenges, and gaps | during development and change impact analysis of highly integrated
in the current complex digital systems.

standards/guidance Identify gaps in the design/development assurance processes, used to

verify and validate integrated complex digital systems, and identify any
potential failures and failures effects resulting from such complex
systems integration for highly integrated, distributed platform systems.
Ensure common understanding of system design model definition.

Model used to express architectural, behavioral, performance, and
interface requirements of the system being modeled.

System design model can be analyzed to predict and understand the
modeled system’s capabilities and operational quality attributes (e.g.,
performance, reliability, safety, security).
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Research Objectives

Detailed Work Description

System design model is typically technology independent, where the
requirements expressed by the model may be allocated to either
hardware and/or software.

Identify MBD processes, where executable models (system design
model) are developed at the system level for behavioral evaluation, and
requirements for software process are defined.

System development process.
Requirements development.
Requirements validation.
System-level verification.

Identify MBD processes to integrate between system- and software-
level models.

Identify MBD processes to integrate between system and airborne
electronic hardware models.

Identify how to conduct model coverage analysis.
Identify integration touchpoints of MBD with V&V processes.

6.1 Potential safety issues and gaps in the design/development
assurance processes

In order to assess potential safety issues and gaps in industry guidance, summarizing prior

sections of this report is helpful:

= Section 4.2 identified potential industry guidance shortcomings (particularly related to

aircraft/system integration and modifications to aircraft or systems).

= Section 4.3 identified potential industry guidance gaps related to safety.

= Section 5.2 discussed potential industry guidance gaps related to existing V&V processes

for highly integrated, distributed platform systems.

In addition to the content covered in the sections referenced above, it is important to understand

what needs to be modeled, the required level of fidelity of said models, and how the different

models will be integrated. This is critical to being able to use the models to help with systems

architecture analyses, safety analyses, systems integration, and change impact analysis.

All models are wrong. Some are useful.—George Box
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Models, by definition, are an abstraction of reality; they are a simplified version of a concept,

relationship, system, or structure. A model can be graphical, mathematical, or a physical

representation. Some of the objectives of modeling include:

Ensure there is complete and correct information across an enterprise value stream.
Increase ability and efficiency in conducting change impact analysis.

Aid in regression analysis.

Minimize the recreation of data in multiple “authoritative” sources.

Increase the level of fidelity of information.

Aid in communication and interpretation of design intent.

Improve ability to analyze a system design earlier in the development lifecycle (e.g., prior

to detailed design release, software coding, build).

Provide verification and validation capabilities beyond what can be practically and safely

achieved via testing of flight vehicles.

As stated above, there are significant potential benefits to modeling. However, it is important to

clearly understand the required scope and the required level of modeling fidelity. It is a common

(and correct) saying that the results of using model are only as good as the model itself. This

leads to the standard cliché “garbage in, garbage out.”

The models will be generated in support of multiple design disciplines (e.g., avionics, flight

controls, stability and control, electrical, hydraulics, flight deck). In addition, it is common in the

aerospace industry for a given aircraft to have multiple suppliers. This highlights the importance

of having models that can be integrated.

Will the models sufficiently represent the actual design in order to make a safety

assessment?
Will the models sufficiently represent the interfaces to support integration analyses?

Will the models sufficiently represent the behavior of the as-designed/as-built flight

vehicle, in order to analyze performance during nominal and failure conditions?

Will the models enable different design disciplines to integrate with each other (as

required)?

Will the models enable the integration of different suppliers’ models?
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=  Will the models identify when lower level models violate high-level model constraints or

assumptions?

= Will the models support the recursive, iterative nature of design (as further details are
developed)?

The following diagrams will provide a simplistic example of some model considerations,
particularly with regards to the required level of fidelity. The concept of data models to support
integration and safety assessments is discussed in further depth in section 6.2.

Figure 60 shows a simplified model, which can occur early in the architecture development. At a
given point, this might be sufficient. The model shows that System A provides an output to
System B. This may be the result of an early trade study. For example, the brake system, which
may have been traditionally used hydraulics actuation, may now be electrically actuated. This
provides a very high level of integration. However, it is not possible to conduct a safety

assessment with regards to this model. For example, the level of redundancy is not modeled.

System B

Figure 60. Early integration
In this example, architecture decisions are made to have:
= Left, center, and right components for System A.
= Left and right components of System B.

However, this level of modeling, as shown in Figure 61, would not support the ability to do

cross-functional integration or safety analyses.
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Figure 61. Architecture redundancy

Figure 62 shows one potential way this architecture could behave. The left yellow component
receives its required data from both the left and center blue components. The right yellow

component receives its required data from center and right blue components.

Left

Component
System A
Left
» Component
System B
Center
Component
System A
Right
» Component
System B

Right

Component
System A

Figure 62. Architecture #1

An alternative architecture is shown in Figure 63. The left yellow component receives its
required data from the left, center, and right blue components. The right yellow component

receives its required data from the left, center, and right blue components.
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Figure 63. Architecture #2

It is important to ensure that the format of the data being passed between different systems is
complete, correct, and consistent. Commercial aircraft use protocols (e.g., ARINC 429, ARINC
664) to specify the format of the data. Figure 64 provides a simple example: System 1 is
publishing Signal 1; System 2 is subscribing to the Signal 1 that System 1 is publishing. To make
this exchange of data possible, an interface needs to be both established and controlled between

System 1 and System 2. This interface will include:
= Transmission path between the two signals.

= Consistent definition for the signal.

System 2

System 1 —r—

Figure 64. Interface protocols

The purpose of this simple example was to highlight how the required functionality can be
achieved. It is important to clearly establish the required level of fidelity. To answer this, it is
first important to understand why the model is being built. What purpose does it serve? How will

it be used? Who will use it? How will the data be captured and managed? Do different models
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need to be integrated? The subsequent section goes into this in further detail, demonstrating how

a single data model can be used to support different types of systems architectures.

6.2 Common understanding of system design model definition

It is important to understand what needs to be modeled and to have common understanding of
the system design model definition. This is important because an airplane, similar to any other
design, is a compromise of many competing objectives; it requires the knowledge and
experiences of multiple design disciplines. (It should be noted that safety is the most important
part of the design.)

Different design disciplines need to work together to determine the optimal aircraft design. If this
does not occur, it is easy to optimize a particular aspect of the design, but to overall sub-optimize
the design solution at the airplane level.

One of the benefits of modeling is to provide the opportunity to identify if a system is being sub-
optimized. In order for this to occur, it is important to have a common framework so that the
different models can be integrated. This is reflected in the principle of concordance, which can
be defined as the ability to represent a single entity such that data in one view (or level of
abstraction) matches the data in another view (or level of abstraction), when talking about the
same thing.

Section 4.2 described the concepts of vertical, horizontal, and diagonal integration (shown in
Figure 65).
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Figure 65. Vertical, horizontal, and diagonal integration

Vertical integration ensures the traceability and acceptability, as one moves from one abstraction

level (airplane, system, item, LRU) within a given hierarchy (requirements, functional, logical,

and physical). Horizontal integration ensures that there is an integrated product architecture at



each abstraction level. Diagonal integration ensures the allocation/traceability from one
abstraction level to another (e.g., from system to item/LRU). It helps ensure that the derived
requirements from design decisions made at the higher abstraction level are identified and

captured. The data model should support vertical, horizontal and diagonal integration.

6.2.1 Data model

To support the principle of concordance, it is important for the MBSE and MBSA activities to
have a common data model. The data model captures the data objects, attributes, and

relationships that need to be captured, as process and task steps are executed.

The following sections contain examples of data models for the systems architecture model, as
described in Figure 66. They are meant for illustrative purposes only; they are not meant to
imply that they are the only acceptable data models. It is also not meant to imply that these

would be complete data models for a large, complex, highly integrated system.
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Figure 66. Systems architecture model

Figure 67 provides an overview of UML diagrams, which consist of objects attributes and

relationships. Figure 68 provides an overview on the types of relationships.
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Figure 67. UML 2.0 Class diagrams

Relationship Name

Directed Association

Relationship Description
Establishes a relationship between two objects and
the reasons for the relationship. A directed
association indicates that control flows from one
object to another.

A special type of association that organizes objects

Aggregation into an assembly. If the assembly is destroyed, the
component objects still exist.
A special type of aggregation where, if the
Composition assembly is destroyed, the component objects

are also destroyed.

Generalization
(Subtypes)

A relationshipin which the definition of one model
elementis based on that of another model element,
and is similar to, yet different from the referenced
model element.

Figure 68. UML 2.0 Relationship icons

The subsequent sections will describe the different parts of the systems architecture model in
UML.

6.2.1.1 Requirements architecture data model
The requirements architecture data model (as seen in Figure 69) shows that parent/child
relationships can be created. The cardinality shows how many of each object type can be related.

In this data model, there is a one-to-many relationship (i.e., every requirement can have many
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children requirements). This same process can be repeated at multiple levels to create a

requirements hierarchy.

|
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«Requirements Architecture»
Requirement

E Type:Requirement_Type

Figure 69. Requirements architecture data model

This requirements data model enables the creation of the requirements hierarchy. The

requirements architecture, as shown in Figure 70, is a set of decomposed “Requirement” objects.

Higher-level requirements can be decomposed into more specific lower-level requirements. The

requirements can have subtypes, such as functional, performance, or design.
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Figure 70. Requirements hierarchy

6.2.1.2 Functional architecture data model

The functional architecture comprises a set of decomposed “Function” objects. Higher-level

functions are decomposed into more specific lower-level functions.

The main elements of the functional architecture data model are shown in Figure 71, which are

useful data categories. Objects can also have attributes, which define and describe an item in the

data category. The functional architecture data model can include the following objects:

=  Function.

= Function port.

= Functional data flows (input and output).
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= Controls.
= Logic gates.

A function converts inputs to outputs. The input and output objects are children of the function
object. Inputs comprise input flows and controls, and outputs comprise output flows. Input flows
are resources needed by the function to execute. Controls are constraints on the execution of the
function. Output flows are products of the function following execution.

“FAonal_Arheec. e

Flow

sForconal_Archesctres

Flow
0.+ [*Fenconal_Achescres | “Furcions_Achtecise Absacts
Function lo..* 0.* Logic_Gates
4 "
5" 0. 0.%
flow 0..1 < -
1
} 0..*
<
K]
«Funcional_Archascse
& 3 ect s
« Archaect “Funconal_Arh
«Furcioral_Ahtecise Absacts aonel_Ard S NVV& e
Function_Port
Furcional_Axhtecires “Funconsl_Aschzectaes “Furcions_Achvec ree
Input_Flow Output_Flow Control

«Furczional_Axhecisres “Funcional_Archtectres

Figure 71. Functional architecture data model

As shown in Figure 72, the connection operations between functions can be accomplished by
creating data relationships (links) between output function ports and input function ports. The
output function port is the source of the link and the input function port is the destination of the

link. This functionality enables the creation of data flow diagrams.
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Figure 72. Sample data flow diagram

Logic gates and flow association can be used to establish sequence and execution logic between

functions. Figure 73 also shows subtypes (generalization) associated with logic gates (for

example, “AND” and “OR” generalize to logic gates). This functionality enables the creation of

functional flow block diagrams (as shown in Figure 73).
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Figure 73. Sample functional flow block diagram
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This functional data model enables the creation of the following:
* Functional hierarchy (parent/child relationships).
= Functional data flow diagrams (inputs and outputs for functions).
= Functional flow block diagrams (sequence).

6.2.1.3 logical architecture data model

As shown in Figure 74, the logical architecture can consist of a system definition object, with
subtypes of hardware and software. The data model contains a host association, which can be
used to integrate hardware and software (i.e., software hosted on hardware). This data model
enables the creation of a DIMA, in which, for example, an Avionics software package (such as
Flight Management System) is hosted on hardware (such as a general processing module). The
general process module can host multiple software applications.
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Figure 74. Logical architecture data model - subtypes

One of the key reasons for modeling a system is to understand the intra-system and intersystem
interfaces. This is critical to helping validate that there will be no anomalous behavior in both

nominal and failure conditions.
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Figure 75 shows a data model that can be used to create ports. The logical architecture data

model has three major system port classes:
= Physical port.
= Logical port.
= Interface.

The physical port is used to model connections on hardware. The logical port is an interface
point on a logical element; it is used to model signal transmission ports on software. Interfaces
are used to model the signals transmitted on physical ports and logical ports.
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Figure 75. Logical data model: system port subtypes

It is typical for a commercial airplane to use multiple ARINC protocols. The data model needs to
support the creation of different signal formats. As an example, Table 11 describes the difference
between ARINC 429, 629, and 664 signals.
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Table 11. Signal characteristics of different ARINC protocols

ARINC Protocol

Characteristic

ARINC 429

Signals are single 32-bit data words.
Signals transmitted from broadcaster to all receivers.

ARINC 629

Signals comprise up to 265 20-bit data words. Messages comprise up to
31 ARINC 629 signals.

Signals broadcast to every LRU connected to the bus. Bus schedules are
required to avoid signal clashes.

ARINC 664

Signals comprise multiple 32-bit data words, up to 1472 data bytes.

ARINC 664 signals are not broadcast over entire network; message traffic
is directed to subscribers through routers (switches).

Figure 76 represents a data model that can be used to support the creation of different signal

formats.
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Figure 76. Logical architecture data model — signal format

Figure 77 shows a data model that can be used to support software and hardware integration,

enabling software interfaces to be modeled directly on hardware. It should be noted that this data

model can work for both DIMA (with hosted software) and more traditional architectures (with

software in a standalone LRU component).
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Figure 77. Software-hardware integration data model

6.3 System model-based design example

Figure 78 shows a sample architecture model, which is consistent with the theoretical systems

architecture model described in Figure 63.

For simplicity, the assumption will be that higher-level architecture requirements and trade
studies have already been conducted, identifying how to control the airplane. A lower-level

function includes the ability to control airspeed.
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Figure 78. System architecture model example

The logical architecture describes “how it is done.” In this example, the calculate airspeed
function will be implemented by a hosted application software that is part of a DIMA.

6.3.1 Requirements architecture modeling example

The requirements architecture data model (as shown in Figure 79) allows the creation of a
requirements hierarchy.

The requirements architecture describes ‘how well,” including performance requirements and
design constraints. The following requirements will be used for the example:

» The airplane shall control airspeed to within +/- 2 nautical miles per hour of a target

reference.

= The airplane shall calculate and transmit airspeed at a minimum of 2 hertz.
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l

REQ-1.2.3.2.1 |
Figure 79. Requirements architecture

6.3.2 Functional architecture modeling example

The functional architecture identifies “what needs to be done.” Functions could include the

parent function Control Airspeed and the child function Calculate Airspeed.

Figure 80 shows how the function Control Airspeed would be created, per the data model.

Figure 80. Functional architecture — functions

Figure 81 shows how the function Calculate Airspeed can be created as a child of the function

Control Airspeed, per the data model.
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Figure 81. Functional architecture — parent/child functions

Figure 82 shows how the output port and output flow Stagnation Pressure can be created as child

of the function Sense Stagnation Pressure, per the data model.
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Figure 82. Function ports and output data flows

Figure 83 shows how the input port and input flow Stagnation Pressure can be created as child of

the function Calculate Airspeed, per the data model.
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Figure 84 shows how the subscribe line can be created between the output port/and input flow

Stagnation Pressure can be created as child of the function Calculate Airspeed, per the data
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Figure 84. Functional subscription

6.4 Model-based design processes: systems level

The logical architecture is a view of the architecture depicting the organization of logical
elements of a system, their relationships to each other, to other architectural elements, and to the

system context. Two key elements are the system definition and ports. The logical ports are
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defined as children of systems (hardware or software); they represent messages received or sent
from software. Physical ports are defined as children of systems (hardware) and represent the

physical pins or group of pins on an LRU.

As shown in Figure 85, an ARINC 429 port can be created, per the data model.

“wopa_Athamcse Abmace wopaal_Achecse Abeac
System_Port_Definition System_Definition

A429 Physical Port (D)

Realize

A429 Application Port (D)

Transmit

A429 Physical

A429 Signal 1 (D)
Port (D) B

Signal Format A429 Signal Format 1 (D)

Realize

A429 Application Part Definitionl

Port (D)

Figure 85. Systems and ports modeled

As shown in Figure 86, an ARINC 429 port can be created, per the data model. Systems objects

communicate through system ports.

A429 Physical Port (D)

R""l"“ A429 Application Port (D)

Transmit

A429 Physical
Port (D)

A429 Signal 1 (D)

Signal Format A429 Signal Format 1 (D)
Realize | [

A429 Application Part Definition1

Port (D)

Figure 86. System-system communication via system ports

As shown in Figure 87, system connectivity can be created, per the data model. Physical port
objects are used to physically interface system objects. In this example, the connectivity is
created by ARINC 429 LRU 1 and ARINC 429 LRU 2.
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Figure 87. Systems connectivity

As shown in Figure 88, per the data model, systems connectivity is completed by connecting the

physical ports to the transport element (in this example, the ARINC 429 data bus).

A429 Data Bus ‘ Ethernet Port
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Transmit i oo el
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LRU 1 signal Format A429 Signal Format 1

5
I
{
!

Sugnal Format A429 Signal Format 2

Figure 88. Physical ports and transport elements

6.5 MBD processes to integrate system and software/AEH models

The following examples will show how a data model can support the integration of the system
and software/AEH models. Figure 89 shows how an LRU (hardware) can be created, per the data

model.
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Figure 89. Hardware

Figure 90 shows how a hosted application (software) can be created, per the data model.
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Figure 90. Hosted application software

Figure 91 shows how a host relationship can be created between software and hardware, per the

data model.
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Figure 91. Host relationship

The integration of software and hardware will involve the transmission of signals (which contain
detailed parameters) via logical and physical ports.

Figure 92 and Figure 93 show how ARINC 429 physical and logical ports can be created, per the
data model.
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Figure 92. System port subtype — physical port
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Figure 93. System port subtype — logical port
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Figure 94 shows how an ARINC 429 signal can be created, per the data model.
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Figure 94. Signal

Figure 95 shows how the signal format and the signal format association can be automatically

created when the output signal is created.
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Figure 95. Signal format

Figure 96 shows how the airspeed parameter can be created, per the data model.
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Figure 96. Data parameters

Figure 97 shows how the airspeed data parameter can be incorporated into data words, per the
data model.
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Figure 97. Data words
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ARINC 429 signals are single 32-bit data words. Figure 98 shows the detailed signal format
incorporation, per the data model.
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Figure 98. Detailed signal — signal format incorporation

Figure 99 shows how a signal can be created and transmitted, per the data model.
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Figure 99. SW/HW integration — transmit
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Figure 100 shows how a signal can be received, per the data model.
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Figure 100. SW/HW integration — receive

Figure 101 shows how the logical port can be linked to the physical port, per the data model.

~
m— —---—J. .-._ - { o e e w e ompane
1—.—- E}
A btamns s ga_ At —
! Pownaal_port { | ! Lagnat_pon /
Bt (g ) o0 Sonmntesnifon s . | Ethernet Port
o
o hU2
o = [f] A429 Physical Port
Poaire
M} 1 , 29 Port
r| ——— "
¥ - 0 leo
. nr— o s——— h—
ardmare S 4 \ S i
1 [y oA ety e —
R erennd
T 3 (0
o
Setave_Ocourence o ac #
vt =
) r—r— — »
T - erwenal
- Avaocames Can o b mate seteee
o N r T e A -
X $: » Owncien 0ot te ot san ety b0 Sascund =
e e ' ] v St _Oummancs i Oraeten st
Pevamater e trne
ol 8 : | et =
Sgpl_F o b
—-= when
© ML Supm 4 cemes
Avt mmde e ver Po e eeen
e wd b e Pw s Tt
naser
Aanacaons car smk b made betwe
e e w8 pate o
—='.-_-'-. T Omty Ovtgnt Paramators may be.
—I 9000 St s Sepl Format_ Onects.

Figure 101. SW/HW integration — realize
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Figure 102 show how the interfaces can be created and reconciled, per the data model.
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Figure 102. Interface reconciliation

These examples demonstrate how, using a data model, the requirements architecture, functional
architecture, and logical architecture can be developed and integrated. This includes the
development of system-level, software-level, and hardware-level models, including their

respective interfaces and integration.

6.6 Model coverage analysis
RTCA DO-331 [6], Model-Based Development and Verification Supplement to DO-178C and

DO-278A, identifies the need to conduct model coverage analysis when the design models are

used in the software development process.

The purpose of the model coverage analysis is to ensure the completeness and thoroughness of
the verification activities. The models are developed, based on the requirements; the model
coverage analysis determines which requirements (expressed by the model) are (or are not)

covered by verification cases. The verification cases can consist of one or more of the following:
= Simulation cases.
= Test cases.

= (Cases produced through other verification techniques such as formalisms.
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The system-level model coverage analysis criteria should include the following:

All input variables that are driven by a requirement are exercised.
Each functional block that is exercised.
Coverage of all the transitions between states that are exercised.

Each decision or Boolean gate that is exercised.

Both a tool-based and manual process can be used for model coverage analysis:

Tool-based process — There are industry verification coverage tools that can be used.

Manual process — Reviews of test procedures, written for textual requirements, against

the model to ensure that the procedure exercised all elements in the model.

Model coverage analysis may identify deficiencies. DO-331 [6] identifies the following activities

that may need to be conducted, in order to address verification deficiencies discovered during the

model coverage analysis. Per DO-331:

Shortcomings in the requirements-based verification cases or procedures — The
verification cases should be supplemented or verification procedures changed to provide
the missing coverage. The method(s) used to perform the coverage analyses, based on the

requirements from which the Design Model was developed may need to be reviewed.

Inadequacies or shortcomings in requirements from the Design Model was developed —
The requirements from which the Design Model was developed should be modified and

additional verification cases developed and verification procedures executed.

Derived requirements expressed by the Design Model — Appropriate verification cases
should exist or they should be developed for the derived requirements and verification
procedures should be executed to provide the missing coverage. Previously unidentified
derived requirements should be identified, justified, and provided to the system

processes, including SSA process.

Deactivated functionality expressed by the Design Model — Deactivated functionality
expressed by the Design Model should be justified. For deactivated functionality
expressed by a Design Model that is not intended to be realized in any configuration used
within an aircraft or engine, a combination of analysis, simulation and testing should
show that its realization is prevented, isolated or eliminated. For deactivated functionality

expressed by a Design Model that is only intended to be realized in certain approved
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configurations used within an aircraft or engine, the operational configuration needed for

normal realization of these requirements should be established and additional verification

cases and verification procedures developed to satisfy the required coverage objectives.

= Unintended functionality expressed by a Design Model — Unintended functionality

indicates an error is present and the functionality should be removed from the Design

Model.

As indicated above, model coverage analysis activities can help identify if there are model

deficiencies.

6.7 MBD touchpoints with V&V process

Figure 103 shows the modeling activities occurring at multiple hierarchical levels. As a result,

the touchpoints with the V&V process can similarly occur at all levels.
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* Does subscribing system(s) need 10 change of its safety analyses?
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Inter-system safety analyses (FHAS, etc )
« Does providng system(s) need to change any of its safety analyses?
+ Does subscribing system(s) need to change of its safety analyses?
Does the change impact any impacted systems functonalty?

Spec#icason Control Drawing requirements
Software changes (DO-178)

AEH changes (DO-254)

Hardware changes

Figure 103. V&V touchpoints

The following figures provide examples of systems architecture validation. Figure 104 shows

requirements allocation, which helps validate a complete and correct set of requirements.
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Figure 104. Requirements allocation

Figure 105 shows some of the validation activities for validating that the interfaces are complete
and correct.
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Figure 105. Interface management

Figure 106 shows some of the validation activities for validating that the signals are complete
and correct.
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Figure 106. Signal validation

The system architecture needs to be verified to ensure that it is integrated and adequately

implements the intent of the requirements.

Table 12 lists modeling objects that can be the touchpoints to the verification process.

Table 12. Verification objects

Verification Object

Description

Verification Case

The primary mechanism for defining and documenting how the
verification and validation are accomplished and for identifying which
portions of the system architecture and system definition or product are
being verified.

Verification The verification procedure is a detailed description of how the

Procedure verification will be performed. It may depend on the verification
environment.

Verification Model | This model or simulation is developed to support the verification and

validation of the system and/or the product. It includes modeling of
requirements, functions, functional interfaces, systems, physical parts,
and transport elements.

Verification Result

This is the data that is generated as the result of executing the
verification procedure.

Verification Record

This is the evaluation of the verification results, with respect to the
anticipated results or the expected results.

Verification
Environment

This is the definition of the infrastructure needed to perform the
verification. For example, product verification and validation may be
conducted using a standalone test bench. The standalone test bench
would be considered the verification environment.
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7 Assess the latest solutions, tools and technologies

This section assesses the latest solutions, tools, and technologies. Table 13 describes the

approach to address these research objectives.

Table 13. Latest solutions, tools, and technologies

Research Objectives

Detailed Work Description

Assess the latest solutions,
tools, and technologies

Identify state of the art for MBSE and MBSA.

Identify how MBSE/MBSA implementation experience has
shown that errors and omissions with potential of adverse
effects on safety can be found and resolved earlier in the
design cycle and with change impact analysis, resulting in less
effort and disruption to industry and regulatory agencies than
with traditional methods.

Identify how MBSE/MBSA techniques can be one means of
addressing potential gaps in existing guidance related to
redundancy and capability in IMA architectures to enable
more efficient means of achieving product safety standards.
Identify required functionality needed for MBSE/MBSA tools
to be effective (tool agnostic).

Investigate how model-based design approaches, using
formalisms, could mitigate integration and safety issues for
process execution problems.

Identify MBSE and MBSA as approaches to design that
emphasize the injection of additional formalism into pre-
existing design processes. These formalisms can be
introduced at a variety of levels of abstraction of design. At
each level, the formalisms enable a number of new analytic
capabilities:

Analyses of individual systems (e.g., demonstrating their
conformance to requirements).

Analyses of interactions between systems (e.g., demonstrating
their conformance to communication protocol requirements).
Analyses of the emergent behavior created by the combination
of individual systems into a greater system of systems (e.g.,
demonstrating properties of the system of systems given
properties of the systems themselves).

Identify integration touchpoints of MBSE/MBSA with V&V
processes.
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7.1 MBSE/MBSA state of the art

MBSE helps transition from the traditional systems engineering, which consisted of data in static
documents. Often, the same data was required in multiple documents, which increased data
synchronization efforts. MBSE can improve efficiency by having the data as set of object
models, and then creating relationships between the different objects within the model. As a
result, users are able to create different views of the same data — as opposed to re-creating the

data multiple times to create different views.

Having a common single source of truth, with multiple viewers looking at the same data (as
opposed to creating multiple overlapping data, which is required to be continuously

synchronized and harmonized), provides great benefits.

This “single source of truth” improves efficiency, because all users can make real-time updates.
It also enables virtual systems integration and test. The ability to do early systems integration and
test helps identify potential design problems earlier, which reduces product development costs.
Capturing and managing architecture data in a single data environment can help ensure product
quality and enable affordability. The probability of “getting it right the first time” is increased
when all the required information is contained in a single data model. The following benefits can

be achieved:

= Single data environment ensures completeness and consistency of design data. The users
are looking at the same data but from different perspectives, which helps ensure the
accuracy. In the spirit of the famous analogy of the blind man and the elephant, all users
can see both their “part,” as well as the larger picture. In addition, all users are working
with the latest data. This improves the fidelity of the data.

= Rich database permits multi-user input and immediate synchronization, improving
efficiency and productivity. This helps with intangibles, such as minimizing the time
associated with interpretation of intent. It also minimizes the re-creation of data for

downstream processes.

= Traceability through model elements enables efficient change/impact analysis, enabling a
more adaptable system. This helps ensure that modifications to the models are clearly
communicated to all potential impacted customers. This is particularly true if the model is
set up in a “publisher-subscriber” framework. Users can immediately be notified if there

are any interface changes.

= Use of a single data environment results in data availability throughout program life

cycles
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= Robust query engine allows rapid assessment of the integrated database, finding
anomalies early, thus preventing rework. Queries can be used to identify missing,
incorrect, or incompatible data. Examples of errors are unallocated requirements and
functions; system elements with no allocated driving requirements or functions; system
attribution not matching requirements specifications; unsubscribed published data (and
vice-versa); publisher-subscriber data definition discrepancies; published data not
physically routed to subscribers properly; bandwidth overutilization; timing
noncompliance; and, detecting where actual values of measured performance parameters

exceed allocations.

MBSE/MBSA implementation experience has shown that errors and omissions with potential
adverse effects can be found and resolved earlier in the design cycle and with change impact
analysis. It is important to emphasize the existing processes are safe. The main benefits seen to
date with MBSE/MBSA are improved efficiencies in identifying (and fixing) potential problems

earlier.

Products are comprised of components, which are often produced by multiple suppliers. The
components are often procured through contracts, which impose requirements and specifications,
which include interface definitions. Ensuring the correctness and completeness of the
specifications will increase the likelihood that the components will properly integrate when
delivered. This reduces rework, which mitigates schedule and cost risk. Because models can be
integrated into an overall system functional model, this increases the ability for first pass quality.
Models also enable emulation. This can be particularly helpful if not all of the components will
be delivered concurrently with the same level of fidelity (which is typical during the early stages

of a development program).

The more complete, accurate, and properly cross-referenced the specifications are, the better the
components integrate when delivered, thereby reducing the cost and schedule impacts of rework.
Specification discrepancies not discovered in models are destined for the test bench or physical
system where their resolution is costly. Reconciling requirements and interface definition across
documents is arduous and error prone. It can be more effectively accomplished using model-

based methods, as depicted in Figure 107.
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Figure 107. Modeling validation

Boeing experienced some of these benefits when it used model-based engineering when
developing the Air Data Reference Function (ADRF) for the 777X. The ADRF is a key avionics
function, processing signals from pressure and temperature probes and computing aircraft state
parameters, such as airspeed and altitude. Using an MBSE approach gave the engineers the
opportunity to work faster, reaching higher first-time quality through model-based engineering.
Early integrated testing of the model in the simulator helped to verify and correct the system’s
interfaces and behavior, long before such testing could be achieved on the design through
conventional development. The ADRF project for the 777X proved that a MBSE approach could
improve quality and communication, de-risk the program, and significantly reduce development
cost and time. Requirements could be validated at a very early stage in the program, avoiding

ambiguities, erroneous information, and other specification flaws.

Boeing also experienced positive results in achieving flight test stability as a result of using
modeling. MBSE models and, specifically system architecture models, can help minimize errors
during the systems development and design. It has been shown that modeling can result in
increased flight test stability on current commercial aircraft programs, compared to equivalent
programs in the 1990s. Referencing Figure 108 below, there was increased design stability
during the flight test program, even though there were increased interfaces. The resultant benefit
realized from this additional modeling effort is an order of magnitude decrease in required ICD

changes during test on current programs compared to earlier programs.

The ability to ensure the model is complete and accurate is greatly enhanced through rule
embedding, user definable queries, real time input/output discrepancy checking, and other

analysis features incorporated within the MBSE environment. These features greatly accelerate
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system architecture model maturity, thereby allowing aggressive development schedules to be
maintained. The number of interfaces for current commercial airplane digital systems can be an
order of magnitude more than systems designed in the 1990s. However, the interface errors
experienced during test are now an order of magnitude lower than in previous generations of
commercial airplane. Hundreds of thousands of interface errors are now discovered in system
architecture models rather than in integration labs. The use of model-based methods has also

significantly reduced the flow time required to validate a new airplane ICD revision.
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Figure 108. Modeling to reduce flight test discoveries

Boeing has achieved other benefits from modeling. By assigning timing, latency, data size, and
other attributes to interface objects within the model, the data networks can be demonstrated to
be compliant through analyses, such as bandwidth utilization and end-to-end latency. This is

very helpful in being able to help show that a network is bandwidth and timing compliant.

7.2 Functionality needed for MBSE/MBSA tools
The INCOSE SE Vision 2020 defines MBSE as “the formalized application of modeling to

support system requirements, design, analysis, verification and validation activities beginning in

the conceptual design phase and continuing throughout development and later life cycles.”
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Multiple MBSE tools exists. Table 14 is a subset and is not meant to be an exhaustive list of
MBSE tools.

Table 14. MBSE tools

Tool Publisher Modeling Standard
Cameo Systems Modeler NoMagic SysML

Rhapsody IBM SysML and DoDAF
Core Vitech SysML and DoDAF
Modelica and Dymola Dassault Systemes Modelica

Innoslate Spec Innovations SysML and DoDAF
Enterprise Architect SPARX Systems SysML

Capella PolarSys ARCADIA

The intent of this paper is to remain tool agnostic. As a result, there will not be a detailed
comparison of different MBSE tools.

As shown in Figure 109, the MBSE modeling tools should be built to support the model-based

Processces.

Modeling Tools

Model Based e KRg=ting Eeiagas e Presentation

Processes Frameworks

Figure 109. Model based tools

It is important to re-evaluate the existing document-based processes and determine what, if any,
changes need to be made to support MBSE. Simply digitizing the existing processes and artifacts
will often not achieve the desired MBSE benefits, particularly if the inefficiencies of the paper-

based approach are simply included in the digital realm.

An MBSE tool consists of modeling languages (such as UML and SysML) and structure, which
defines the relationships between the different modeled objects. (Reference section 6 for

additional information.)
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The modeling tools will support presentation frameworks. Examples include Department of
Defense Architecture Framework (DoDAF) and Unified Architecture Framework (UAF), which

provide visualization for different stakeholders.

A diagramming interface is a necessary component of an MBSE environment to allow human
comprehension of the model. A graphical representation of a model can be an improvement over
simply text-based descriptions (“a picture is worth a thousand words”). A diagram is a good
starting point for stakeholder discussions, ensuring that there is a consistent and complete
understanding of the model.

However, a graphical representation of a model is not necessarily sufficient to be able to define
and analyze the model, particularly depending on the complexity of the model. A complex model
may consist of millions of objects and relationships. It is not practical to be able to analyze
millions of objects and their interrelationships for completeness and correctness. The inability to
do this could impact the integrity of the model (and its resultant benefits). Figure 110 shows the

transition that occurs from text-based document to diagrams/visualization to query capabilities.

Text Base Diagrams/ Query /
Documents Visualization Analysis

Figure 110. Transition from text to diagrams to queries

Figure 111 shows the relationships between diagramming and visualization, as the design
matures and becomes increasingly more detailed. This highlights the importance for a query
engine to support analyses, helping validate the completeness and correctness of the models. As
the model size increases, the importance of a query engine becomes more significant than the
visualization capabilities. In Boeing’s experience, as the models mature and grow, most
experienced users focus less on graphical viewing utilities and work directly in the database.
Diagrams are initially used to establish and visualize the high-level architecture. As the
architecture models are decomposed and defined in greater detail, however, the ability to

comprehend the models by visual review becomes limited.

Although diagramming interfaces still have utility at later stages in a program, visualization of
the model ceases to be the goal. The goal becomes to establish model completeness, correctness,
and accuracy, and this is best accomplished through queries and reports. Queries are particularly

important to be able to analyze current commercial airplane digital network models.
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Figure 111. Visualization and queries

An MBSE/MBSA tool should be able to support the following:

» Requirement management — process of documenting, analyzing, tracing, and prioritizing

requirements.

= Functional architecture — an architectural model that identifies system function and their

interactions.
= Logical architecture — defining how the system will realize the required functionality.

= Interface control definition — describing the interface or interfaces between subsystems or

to a system or subsystem.

= Verification and validation — independent procedures for checking that the system meets

requirements and specifications and fulfills its intended purpose.

= Content management — ability of the application to publish, edit, control change, and

modification of content.
= Scalability — ability of a system to expand to meet business needs.

= Extendibility — systemic measure of the ability to extend a system and the level of effort

required to implement the extension.
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To be effective in doing so, an MBSE/MBSA tool would require the following:

= [Intuitive user interfaces.

= (Creating architecture.

=  Data model.

= Query engine.

= Access to tool suite(s).

= Scalability and database management.

= Support for data reference libraries and data reuse.

= Configuration and version control of all objects.

= Bulk import/export/update capabilities.

Table 15 identifies potential criteria for evaluating an MBSE/MBSA tool.

Table 15. Potential criteria for evaluating an MBSE/MBSA tool

MBSE/MBSA Tool
Functionality

Definition

Intuitive user interfaces

Ability to support systems design innately or by
interacting/importing information from other tools or data formats.

Creating architecture

Ability to represent architecture hierarchies, objects, attributes, and
relationships. This architecture should be viewable in a tree
structure. There should be an ability to copy and reference data.

Data model Ability to create custom subtype objects and custom attributes.
User defined business rules for objects and links are supported.
Query engine Ability to perform customizable queries and to have robust batch

processing capabilities. It is important to be able to query the model
early and continuously to identify missing design elements.

Access to tool suite

Requirements for roles to be customizable and user groups are
supported. The tool should be able to support hundreds of globally
distributed users. To protect intellectual properties, data, attribute,
objects, and links should be accessible by granted permissions and
controllable.

Scalability and database
management

Ability to work in a load balanced and high availability
environment. Ability to support multiple databases and a
configurable and modifiable schema. Consistent performance when
managing large quantities of data and users.
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MBSE/MBSA Tool Definition

Functionality

Configuration and Ability to perform change management capabilities on the model,
version control of all such as baselining, versioning, and managing links. Ability to
objects branch/merge and support variants.

Bulk Support bulk creation, deletion, and modifications of objects, links
import/export/update and attributes.

capabilities

Baseline/Change/State | Ability to identify and manage changes against a baseline.
tracking

It is important for the tool to support attributes that state the version and state of the elements.
Baseline capability alone will often not be adequate, because it does not describe the required
level of granularity. After a baseline is taken, changes will occur. Unless there is enough
granularity, the information is baselined again with a new identifier. Often, a tool is run to
identify the differences between the new and a previously approved baseline and the changes are
re-reviewed. This can make the process cumbersome and difficult to manage, especially if the
repository is distributed between geographically distributed teams. A much better approach is to
build in a system with fine granularity that allows the extraction of the changes from the
repository, and to review the changes and corresponding state transitions in the repository. The
tool can automatically perform impact analysis, if the dependent nodes are connected. The
elements in a model repository should have a version/baseline/extraction and state tracking

capabilities built in, otherwise the benefits may not be realized.
A software tool needs to provide, at a minimum, this level of required functional to support

MBSE/MBSA.

7.3 Formalisms at different abstraction levels

Model-based design approaches, using formalisms, can mitigate integration and safety issues for

process execution problems. Formalism can be used to help with the following:
= Organize to support the use of MBSE.
= Use the model as the authority (not the documents —which reflect the model).
= Ensure appropriate access to the data.
= Use the model (architecture) to perform SE.

= Use data elements for functional and operational analysis to derive requirements.
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= Use data elements to determine system trade studies to meet evolving needs.
= Derive verification activities from the data elements.

= Generate customer artifacts directly from the model.

= Use the data to ensure quality (i.e., the “right design”).

* Query the model early and continuously to identify missing design elements.
= Query the model to prevent overdesign and unnecessary costs.

= Use the model throughout the entire lifecycle.

= Share across various development and support organizations.

MBSE/MBSA, with its formalisms, can enable the integration of the different models at different
abstraction levels. Design is recursive and iterative, but iteration should be occurring at
increasing lower levels of details over time (i.e. difference between modifying existing message
between LRUs and adding new LRUs). This highlights the importance of having formalisms at
the different abstract levels.

Figure 112 shows examples of formalisms at different abstraction levels, which can include:
= Aircraft level.
= Intersystem level.
= Network (for DIMA architectures).
= Intra-system.
= Component.

* Dynamic modeling.
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Figure 112. Formalism at different abstraction levels

It is important to clearly identify the required level of modeling fidelity at the different
abstraction levels. Models will become more detailed at progressively lower abstraction levels.
For example, one is usually not concerned whether a component has a queuing or sampling port
when modeling at the airplane/systems architecture level. Formalism will also enable the models
to be integrated across the different levels. This can help ensure that changes to lower-level

models will not “violate” the higher-level models.

It is axiomatic but it bears mentioning: it is important to know what the model is going to be
used for; this will drive the required formalism. Examples of modeling objectives at the

architecture level (shown in Figure 113) include:
= Validate functionality and performance.

= Validate that failure conditions identified in the aircraft level FHA have been addressed

and that corresponding safety requirements are met.
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= Validate that the interactions of system functions, their interdependencies, independence,
separation, and their contribution to associated failure conditions have been appropriately
identified and assessed.
= Validate Functional Hazard Assessment hazard categorizations.
Model Based =
Architecture Analysis |
System A
I System B

System C
M System D

Figure 113. Formalism at the architecture level

Examples of modeling objectives at the system/subsystem level (shown in Figure 114) include:
= Validate completeness, sufficiency, and accuracy of systems architecture.

= Validate that the definitions that compromise your system are complete, accurate, and

sufficient.

= Validate that the usages (hardware and software) are complete, accurate, and sufficient.
The number of usages is consistent with, for example, the required redundancy

management, reliability, and availability.
= Validate that each system is providing what is required by other systems.
= Validate that each system is receiving what is needed (from the correct system).

= Validate that the parameters, logical ports, physical ports, and dataset and messages have

passed the audits.
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= Validate that system passed any audits conducted by the system that are in addition to the
audits published by IMA (ensuring that the data not only satisfies IMA audits, but also

satisfies system’s requirements).

= Validate design robustness.

System/Subsystem
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Figure 114. Formalism at system/subsystem level

Examples of modeling objectives at the DIMA level (shown in Figure 115) include:
= Validate system to network platform completeness, sufficiency, and accuracy.
= Host system on a general processing module.
= Validate hosted applications to IMA platform compatibility.
= Complete analyses to ensure services provided by IMA are sufficient for the system.
= General processing module (GPM) allocation.
= Network path definition (timing scenarios).

= Network bandwidth analysis (validate network bandwidth allowances are not violated by

the systems).
= Arrange for systems to communicate directly to Common Data Network (CDN).
= Validate applications not hosted on IMA but communicating directly to the CDN.

= Validate end-system configuration files created by IMA are sufficient for the system to

access the common data network and fulfill its system/airplane function.

* Arrange communication across CDN via Remote Data Concentrator (RDC).
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In an MBE/MBSE environment, it is important to ensure that the models are complete and
correct. This is accomplished by a recursive, iterative validation of the models. One of the first
steps is to have and enforce a common modeling language and a standard data model. This helps
ensure that the models are being created in a consistent manner, which is critical for integration.
The standard data model is then constrained by embedded rules that help achieve data integrity.
These rules preclude an individual from certain modeling errors, such as linking an input port to

an input port (as opposed to an output port).
Query engines can enable data audits and checks. Examples of audit reports could include:

= Ensuring analog discrete parameters and digital output parameters have the required

attributes populated.
= Checking the attributes against the data format types for a digital output parameter.

A query can be run to check the relationships between certain attributes for mathematical and
functional correctness (e.g., functional range maximum > functional range minimum and < full

scaled range — upper bound).

Model-based systems engineering intends to centralize all information about the system in a
model, often called the “single source of truth.” The models can support the system’s entire life

cycle, from requirements documentation to validation, and verification exercises to maintenance
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and training purposes. Different stakeholders (including suppliers) can access the models at
different views and levels of detail. This enables the ability to access the data according to their
needs, ensuring consistency of the information. Establishing the formalisms at the different

abstraction levels is an integral part to enabling the integration of the different models.

7.4 Mitigation of integration and safety issues for process execution

Model-based design approaches, using formalisms, can potentially help mitigate integration and

safety issues for process execution problems.

Note: This does not imply that the existing processes are insufficient; this is more about gaining

efficiencies and mitigating schedule and cost risks.

The safety analysis starts with assessing the airplane-level functions and system-level functions

and evaluating for hazard assessments.

The Functional Hazard Assessment (FHA) is a comprehensive qualitative evaluation of airplane
or systems functions, the failure conditions associated with each function, the airplane effects,
and hazard classification of those effects. FHAs are performed at the airplane-level (i.e., AFHA)
and at the systems level (i.e., SFHA).

The FHASs are foundational for all safety analyses. The FHA results drive safety criteria, system
architecture, development assurance levels, HIRF/lightning test levels, and other qualification

test criteria.

The following examples show how formalisms can potentially help mitigate integration and
safety issues for process execution problems. Form follows function. The first step is to identify
“what” needs to be done (i.e., functions). The next step is to identify “how well” (i.e.,

performance requirements).

A requirement can be allocated to multiple functions; a function can have multiple requirements
allocated to it. As shown in Figure 116, a requirements to function allocation matrix can provide
a framework for identifying and validating functional requirements, identifying missing
requirements, developing derived requirements, identifying unrealistic and conflicting

requirements, and eliminating poorly written requirements.
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Figure 116. Requirements allocation to functions

One key aspect of development assurance is to minimize requirements and design errors that
could adversely affect safety. Formally documenting the requirements to function allocation can
help analyze requirements completeness and correctness (which helps mitigate the risk of
requirements errors). The following are some of the analyses and reports that can be generated

when formalisms are used:
= Unallocated requirements.
= Unallocated design requirements.
= Unallocated functional and performance requirements.
= Systems without allocated requirements.
= Functions without allocated requirements.
= Requirements allocated to functions.
= Requirements allocated to systems.
= Requirements allocation sheet (logical, functional, and requirements view).

Figure 117 shows an example of allocation metrics, which can help ensure the completeness and

correctness of the model.
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Figure 117. Allocation metrics

Figure 118 shows a modeling example of failure probability, failure rate, and exposure reference.
This helps create the equipment fault model, which is comprised of all of the components in the
systems architecture necessary to represent each subsystem and their fault behaviors to the
required level of abstraction. Each component in the model has attributes (e.g., dependency
logic, failure rate). This type of modeling can be used to understand how component failures in

the system architecture affect their supported functions.
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Figure 118. Failure probability, failure rate and exposure reference

Figure 119 shows a modeling example of associating functions to FHA. The functional
decomposition is comprised of the aircraft and system level functions and their hierarchy. The
FHAs describe the loss of certain functions that have an associated severity at the aircraft level.

Severity of the loss of function is captured for each flight phase of operation, allowing increased
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granularity in the analyses to cover scenarios that may only occur at specific times in a flight.

The hazards are linked to the function and their resource dependencies.

Figure 119. Associating functions to FHAs

Creating an N2 diagram and table views (which show the functional hazard links from functions
to FHASs) can help identify if there are any missing FHAs.

Figure 120 shows a modeling example of associating the FHAs with flight phases. The hazard
categorization may differ, depending on the flight phase. Failure condition effects may vary,
depending upon the phase of flight at the time of failure condition occurrence. This type of
modeling can be used to help ensure that all flight phases are considered; this can help ensure the

completeness and correctness of the FHAs.
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Figure 120. Flight phases and FHAs

Using the “single source of truth” can help ensure the consistency between the MBSE and
MBSA activities. As shown in Figure 121, the MBSE tool can be used to create logic diagrams,

which can help explain how the system works in nominal conditions; it can also be used to create
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safety dependencies, which can help validate that cascading failure effects are acceptable in the

presence of failures.
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Figure 121. MBSE/MBSA integration

Components are typically procured through contracts imposing specifications. The specifications
often include interface definitions. The more “right” the specifications are, the better the
components integrate when delivered; this will reduce the cost and schedule impacts of rework.
Models (for both MBSE and MBSA) can help enable getting the specifications “right.” Models
also enable emulation, which can be beneficial because often not all components are delivered

concurrently. This allows earlier integration, which is helpful to identify potential problems.

7.5 Touchpoints with validation and verification processes

Section 6.7 showed the touchpoints between the validation and verification processes.
Some the key elements of MBSE/MBSA involve:

* Modeling and creating the data.

= Validating the data (ensuring completeness and correctness).

= Validating the systems will work together (nominal and failure).

= Developing the software and hardware.

* Simulating and testing.

= Measuring data quality and managing configuration (including updates).

Validation activities need to be conducted after the model has been created. This will help ensure
that the data is correct, particularly from an integrated, end-to-end perspective. Both horizontal

and vertical integration analyses need to be conducted for validation. These include:
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= Component level analyses.
* Intra-system analyses.

* Intersystem analyses.

= Airplane level analyses.

Models can help improve validation activities by supporting multiple views: system to system,
subsystem to subsystem, component to component, message to message, parameter to parameter

perspective. This helps validate that the models were complete and correct.

With this validation in place, software and hardware can be developed. (As one benefit, with

proper procedures in place, software can be autocoded directly from the models.)

With the hardware and software developed, verification can take place at the different levels,
such as component, system, or airplane. During this verification, any problem reports should be
documented. These problem reports get collected and will be fixed (as needed) in the next
blockpoint. Change impact analysis should be conducted as changes are implemented. Due to the

iterative nature of design, the process repeats itself.

Section 7.3 discussed the formalism at different abstraction levels. Similarly, validation and

verification will occur at the different abstraction levels.

8 Lessons learned/recommendations from MBSE/MBSA
implementation

This section describes the criteria, mitigation approaches, recommendations, training material,

and position papers. Table 16 describes the approach to address these research objectives.

Table 16. Current guidance and research approach

Research Objectives Detailed Work Description
Develop criteria, Identify the prerequisites/criteria before MBSE and MBSA can
mitigation approaches, be applied.

recommendations, training | Identify the appropriate levels of abstraction of the design where
material, or position papers | additional formalism can be applied.

Appropriate formalisms must be chosen for each of these target
abstraction levels.

Once the appropriate formalisms have been selected, it must be
possible to obtain the required information, in order to construct
the enhanced models at each level.
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Research Objectives Detailed Work Description

The more complete the formalism, the greater the detail that is
required.

Identify the limitations/challenges that these prerequisites
introduce:

Consistency among the models at different levels of abstraction
can be both necessary and difficult to obtain. The degree to
which the representations of the various models are substantially
equivalent can more easily satisfy this need.

Assessing the completeness of any particular model can be
difficult. This limitation can be eased somewhat to the degree
that the models themselves become the requirements for the
system.

Verifying the correctness of the individual models themselves
can be challenging. More formal representations carry more
opportunities for guaranteeing at least the consistency of the
model.

8.1 Prerequisites/criteria for MBSE and MBSA

Systems engineering and safety have long established processes. The potential benefits of
transitioning from a document-focused to a model-focused approach are well understood. It is
more beneficial to have a single source of data, which can be used to generate multiple
documents. Having a consistent, single source of data improves the efficiency in configuration
management and change impact analysis. As shown in Figure 122, in a document-based
approach, the same data can be included in multiple documents. When a change is made (for
example to “Data 1), all three of the documents need to be individually updated. A model-based
approach precludes the need for synchronization associated with the configuration management

of the same data when it is captured in individual documents (each as the “authoritative” source).

A model-focused approach directly improves some of the limitations of a document-based
approach, which can impact efficiency. In a document-based approach, each individual
document is the authoritative source of data. However, the same data is often duplicated in
different documents. This creates the need for data synchronization between the different
documents (where the same data is duplicated). In addition to ensuring the data is consistent
when the documents are initially created, it is also important to keep the data in the different

documents synchronized for subsequent changes.
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Figure 122. Document approach versus model-based approach

Because of the improvements in efficiency resulting from not having to manually synchronize
the same data in different documents, industry is moving from static documents to model-based

documents.

Models have been used as part of document-based SE approach for many
vears, and include functional flow diagrams, behavior diagrams, schematic
block diagrams, N2charts, performance simulations, and reliability models, to

name a few.

However, the use of models has generally been limited in scope to support
specific types of analysis or selected aspects of system design. The individual
models have not been integrated into a coherent model of the overall system.—
A Practical Guide to SysML. Friedenthal, Moore and Steiner

While modeling is not new, one of the goals of MBSE is to have a shared systems model with
discipline-specific models providing their information in a mathematically rigorous format. All

disciplines then “view” a consistent system model.

There are certain prerequisites that need to be in place in order to transition from traditional SE
and safety to MBSE and MBSA:

= Taxonomy and ontology.
= Tools.

= People/training/culture/implementation.
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8.1.1 Taxonomy and ontology

Taxonomies and ontologies standardize terms and the relationships between terms. They are
used in every branch of science and engineering. In biology, species are classified by
taxonomies, for example. Standard terms, and standard relationships between terms, are

necessary for consistent information sharing and interpretation.

Taxonomy is a scheme of classification. Figure 123 shows an example of an MBE taxonomy
across the product lifecycle. To achieve the full benefits, modeling can be set up to support
complete lifecycle (including production and support and services). The focus of this report is on
the airplane vehicle, which is mostly depicted by the blue boxes. The production system
(modeling the factory as a system) can also benefit from an MBSE/MBSA approach. Similarly,
support products (e.g., maintenance manuals) and services (e.g., predictive reliability) can also
be modeled. Having these different models integrated allows for improved optimization
(understanding tradeoffs between design, production and support/services). These additional
elements are included to show that MBSE/MBSA can be applicable throughout the entire
product lifecycle.
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Figure 123. MBE components (taxonomy)

Ontologies detail the objects, attributes, and relationships describing a domain, akin to a data
model. MBSE tools should be architecturally driven by formal data models that ensure data

integrity. A data model is a type of ontology, just more concrete and specific.

Data models are essential to enabling digital transformation/digital thread/digital twin activities.

The concept of the digital twin is to create a digital informational construct of a physical system
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as an entity on its own. This digital information would be a “twin” of the information that is

embedded within the physical system and be linked with that physical system through the entire

lifecycle of the system. The digital twin concept is intended to allow manufacturers to create

models of the physical production systems and processes using historical and real-time data from

smart sensors for near-real-time analysis and system performance improvement.

Figure 124 shows validation and verification in the context of the SE Diamond. Section 6.2.1

provided detailed information on the data models required to support MBSE and MBSA.

Figure 124. Validation and verification in SE diamond

&.1.2 Tools

Tools are also an integral part of enabling MBSE and MBSA. The tools need to support the

following functionality:

Creating models.

Storing models.

Configuration managing models.
Integrating different models.
Analyzing models.

Validating rules and constraints.

Querying.
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= Supporting data analytics.

» Generating documents from models (i.e., autogenerating the required artifacts,

certification deliverables, and other documents directly from the models).
= QGenerating products from models.
= Validating products and model integrity.

= Supporting evolutions of aerospace products, systems, models, support, test, training, for

example.

Tools can be used to help with both validation and verification. As shown in Figure 124,

validation and verification occur on both sides of the diamond.

Requirements validation consists of ensuring that requirements are correct, complete, and
integrated. End-product validation consists of ensuring that the product performs as intended in
the operational environment (as judged by the end users). Design verification consists of
ensuring that the design meets the requirements. The verification method for design verification
is almost always analysis. This is because there is no implemented design at this point to inspect,
test, or demonstrate. End-product verification consists of ensuring that the product is built per

design and that the product meets the requirements.

There are interrelationships between these different activities. For example, it can be the case
that the design verification effort concludes that the requirements are infeasible (for whatever
reason). Feasibility is a validation criterion, so in this situation, the actions of that design

verification would contribute to update and correct the requirements validation.

Tools can be used to support the validation and verification in the lifecycle and gain a better
understanding of a system’s behavior, in both nominal and failure modes. One of the goals of
MBSE/MBSA is the early identification of undesired and unintended behavior, whether it is the
result of a failure, an error, or unanticipated consequences of interactions. The desire to identify
these types of emergent behavior will drive the required level of modeling and fidelity. The tools

need to support the required level of modeling to help identify these types of emergent behavior.

There can be differences in tool usage at the different abstraction levels, such as system level

versus component/item level.

= Systems-level tools support decision making on what the system should be. System-level

tools do not directly create something intended to be implemented in the actual system.
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= [tem-level tools support decision making on how the individual items provide their
function in the context of the larger system. The item tool may directly provide the

physical implementation.

Because the decisions made at the systems level will guide the development at the item level, it
is important that the tools support the ability to integrate the models at different abstraction

levels.

Section 8.2 discusses the challenges with integration of different abstraction levels.

8.1.3 People/training/culture/implementation

The transition from a document-based approach to a model-based approach can have cultural, as

well as technical challenges.

It is important to acknowledge and address the required upfront investment MBSE and MBSA

require. This includes investment in tools, model development, and training.

The transition to a model-based approach may introduce some organizational challenges,

including:

» Individuals with the greatest domain knowledge may not be as familiar with modeling

techniques.
= Individuals who are the best modelers may not have the greatest domain knowledge.

This can usually be addressed by pairing the different skill sets and having them collaborate.
Training is a prerequisite to successful MBSE and MBSA. It is important to have both
knowledge of modeling techniques and engineering domain knowledge. Modeling knowledge, in

and of itself, will not be adequate.

8.2 Abstraction levels and formalisms

Models should support the development and design process and not just end up documenting the
final answer. This means that the models need to support the iterative nature of design of going
from higher-level abstraction to lower-level models with more details. Figure 125 shows how the

formalism occurs at different abstraction levels (airplane, system, component level).
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Figure 125. Formalism at different abstraction levels

Formalism needs to exist at each abstraction level (e.g., airplane, system, subsystem). It also
needs to exist to enable the integration of the different models (created at different abstraction
levels). This includes the ability to support both top-down (higher-level abstractions to lower-
level, more detailed models) and bottom-up (lower-level, more detailed models to higher-level
abstractions).

8.2.1 MBSE and system model-based design

There are two aspects of MBE that readily apply to product design development: MBSE and
System Model-Based Design (SysMBD).

As shown in Figure 126, MBSE can be considered the application of modeling to support system
requirements, design, analysis, verification and validation throughout the development lifecycle.
System Model-Based Design (SysMBD) is the mathematical representation of design functions,
behavior, and software interactions. It is important to be able to integrate the MBSE and

SysMBD models and approaches.
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Figure 126. Integration of MBSE and SysMBD

While MBSE and SysMBD are independent, to increase effectiveness, they should be
interactive. The combination of both strategies enable better traceability across the design, more

robust validation methods, and reuse of the models for various purposes.

MBSE provides a model-based approach to the SE discipline. MBSE enables early architecture
development. MBSE excels in capturing descriptive models of the architecture aspects of a

system that can be statically analyzed through its traceability.

SysMBD provides a model-based approach to rapidly prototype and test different
functional/behavioral designs and validate intended system behavior. SysMBD is used to define
functionality later in the development cycle (after the architecture development). It excels in
capturing details of system functionality and interfaces that can be dynamically analyzed in

simulations.

DO-331 [6], which is a supplement to DO-178, discusses the use of model-based development
and verification in the software lifecycle for software that is produced in accordance with DO-
178C. It is also applicable to the models, developed in the system process, that define the

software requirements or software architecture. DO-331 identifies two types of models, which

are mutually exclusive:
= Specification models.
= Design models.

Specification models “represent high-level requirements that provide an abstract representation

of functional, performance, interface or safety characteristics of software components” [6].
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Design models “include low-level requirements and/or architecture” [6]. Unlike a specification
model, a design model does define detailed software design, such as software component internal

data structures, data flow, and/or control flow.

Figure 127 shows the interactions between lower-level design models, which are part of DO-331
[6], and analysis (evaluation models), which are not. The models developed for simulation and
analysis as part of verification process are not in scope of DO-331. Analysis models represent
system functionality that is conveyed in textual requirements. Simulation models are design or

analysis models that are used to support a simulation with another design or analysis model.
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Figure 127. SysMBD models

A design model directly conveys a subset of the intended functional and behavioral requirements
of the system. Design models often represent the control and monitoring aspects of the system,
and they are often allocated to software and/or AEH components of the system. A set of
traditional requirements should exist for the design model. Additionally, requirements-based
tests (RBTs) written against the requirements for the design model and executed on the design
model in simulation can provide early validation of those requirements, as well as verification of
the model, when model coverage metrics are captured. Traditional requirement types that are
good candidates to be converted to design models include state charts, logic diagrams, textual

logic statements, and other requirements that convey concise and specific behaviors.

An analysis model represents a whole or partial system and potentially the system’s
environment, which may be used to validate the technical correctness of textual behavioral or

performance requirements or verify that the system meets its requirements. An analysis model
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may represent requirements to support verification or validation activity, but does not convey
requirements. They are often mathematical in nature and executable through simulation,
representing the behavioral aspects of physics-based domains of the system. Analysis models
must be validated to ensure their fitness to support the purposes for which they were created
(e.g., correlation to actual performance of the system or environmental characteristics, which the
model represents). An example of an analysis model is a control surface actuator model that is
used to help refine and validate textual requirements defining specification characteristics for the

actuator.

A simulation support model provides an accurate representation of the portion of the
environment or system that behaviorally interacts with a design or analysis model in simulation
to support the usage of the design or analysis model; it is used to convey, verify, or validate any
requirements it represents in the context it is used. A mature and complete design or analysis

model in one context may be reused as a simulation support model in another context.

8.2.2 Formalism at different levels

Once the appropriate formalisms have been selected, it must be possible to obtain the required
information in order to construct the enhanced models at each level. The more complete the
formalism, the greater the detail that is required.

Figure 128 shows the different abstraction levels, each requiring formalism. It is a slightly
different view of the model discussion in the preceding sections. Specification models can be at
different levels, such as airplane and systems levels. Design models can be generated during
software development. The analysis and simulation models, coupled with testing, may drive

change requests, which would be part of the configuration management process.
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Data audits and checks can be conducted to ensure that the model is correct. This level of

formalism needs to be adjusted for each abstraction level. For example, the level of modeling

required to support PASA evaluations does not need to be as detailed as the SysMBD models for

dynamic, functional behavior. However, one would want to be able to create a component once —

and then use it in different contexts (e.g., PASA MBSA, SysMBD detailed model).

8.3 Limitations/challenges of formalism prerequisites

The prerequisites for MBSE and MBSA introduce limitations or challenges, including:

= Consistency among the models at different levels of abstraction can be both necessary

and difficult to obtain. To the degree that the representations of the various models are

substantially equivalent, this need can be more easily satisfied.

= Assessing the completeness of any particular model can be difficult. This limitation can

be eased somewhat to the degree that the models themselves become the requirements for

the system.

= Verifying the correctness of the individual models themselves can be challenging. More

formal representations carry more opportunities for guaranteeing at least the consistency

of the model.
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8.3.1 Model consistency at different abstraction levels

One benefit of MBSE is achieved if the models are consistent and can be used downstream (i.e.,

lower level, more detailed models) without being recreated.

Figure 129 shows the importance of maintaining consistency between different abstraction
levels. The MBSE architecture can include data input/output, connectivity, and requirements
allocations. The SysMBD can include functional behavior, performance parametric analysis, and

code generation (from design models).

Requirements

Refine the requirements

v ¥

SysMBD Architecture
L e ] Measure and ]
" o oftware
¥= If-Sum-Else T v al!dale Barihien
I I consistency i
- > 1
Equations LRU & I::] I_Jl:] LRUB
Functions
Functional Behavior, Performance, Architecture, Connectivity, Links
Parametric analysis, Code Generation Requirements Allocations. Data 'O,

Figure 129. Consistency between SysMBD and architecture

To avoid having to recreate the MBSE and SysMBD models, it is important to be able (within
the capability supported by tools and processes) to have the same modeled object used for
different contexts. This includes having the ability to both:

= Create usages of new objects with the same base attributes.
= Allow the new objects to have unique properties (e.g., values, locations, parameters).

This eliminates the need to have to recreate the same base object. It also allows the models to
differentiate (if needed).

The definition/usage/occurrence terminology, which is shown in Figure 130, will be used to

illustrate the following example: an airplane with a left and right cabinet for its IMA/DIMA.

Note: The terminology is not meant to imply industry consensus. It is being used to convey the

concepts, which are universally applicable.
These concepts will be described in further detail, but the high-level explanation is as follows:
= A usage is an instantiation of a definition.

= An occurrence is an instantiation of a usage.
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Figure 130 shows an example of a left cabinet in an IMA airplane consisting of the following:
= Fiber Optic Translator (FOX).
=  Graphic Generator (GG).
= Power Conditioning Module (PCM).

= Remote Data Concentrator (RDC).

FOX | Def FOX B | Occ RDC2 | Usg

PCM 1 | Occ RDC | Def

PCM 2 | Occ

IMA Cabinet | Def

Airplane Assembly | Def
Figure 130. Definition/usage/occurrence in IMA airplane

A system definition is not an actual LRU or software application. A system definition provides a
template, which can be realized when it is installed on the airplane. The system definition

provides a template for common analog and digital interfaces, including:
= Common electrical characteristics.
= Common connectors and pins.
= Common transmitted and received digital data.

An example of a systems definition is a High Frequency (HF) radio. It is a mechanism to allow

creation and reuse of design data.

A system usage is an LRU (or software application) installed on the airplane at a specific
location (such as left, center, right). The interface characteristics and connection allocations are

inherited from the definition. A usage is a component created, based on an existing definition. It
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can be used to build the definition of a new nested system/assembly. Each installed usage is

wired independently to create system interfaces. An example of a usage is the Left HF Radio.

A system occurrence could be considered to be the usage of a usage. When a usage of a system is
created on the airplane that is based upon a system definition with nested component usages, the
nested component usages occur inside the installed system usage and are called “occurrences.”
For example, when the module is installed on the airplane as a usage, the two internal processors

become occurrences.

This is meant to be illustrative and not a comprehensive modeling of an IMA cabinet on an

airplane. It is important to emphasize that an airplane can have both usages and occurrences.

The occurrence model allows users to construct assemblies and reuse data. This provides
significant time savings, as compared to managing multiple system instantiations separately.

When a definition is used, any of its child usages will also propagate to occurrences.

When the system designer changes the definition, the tool should automatically propagate the
changes to all usages. In this example, there were two usages on the airplane (a left and right
cabin usage). However, systems could have thousands of children that would benefit from a
single edit and propagation to its usages. This is particularly true for parameters used in detailed

interfaces.

8.3.2 Assessing model completeness (validation)

Peer reviews of the models should be used to validate that the models are conveying the correct
intended system functional behavior and that the textual requirements for the model encompass
constraints on the model. While conducting peer reviews, the following are examples of
questions/criteria that can help ensure the correctness and completeness of the model and its

textual requirements:
* Does the model accurately capture the behavior to support its requirements?

= Do the requirements sufficiently guide how this function should be modeled, or are

requirement updates needed?

= Are the assumptions regarding the external system functions correct and documented in

the requirement set?

=  Are all parameters that are relevant to the behavior of the model exposed in the graphical

representation of the model?

= Are the performance requirements identified (e.g., rate, loads, stability, gains, accuracy)?
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=  What should the function do if the input signals are unavailable, invalid, or corrupted?
= Are the constraints identified (e.g., availability, integrity, prohibited behavior)?
= s the model functionally integrated (e.g., input/output signals, range, accuracy, rate)?

= Does the model accurately depict required robustness/sensitivity (e.g., expected and/or
critical levels and combinations of input bias, jitter, noise, oscillation, skew, drift,

asymmetry)?

Figure 131 shows a model-based development lifecycle process flow. It is important to recognize
the feedback loops that occur throughout the development. After the models have been
developed and validated, it is important to update models (as needed), based on feedback from

simulation or testing.
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Figure 131. Model-based development lifecycle process flow

The subsequent section will discuss how to ensure model consistency during the iterative design
process.
8.3.3 Assessing model consistency

Occurrence modeling can help ensure consistency of models across different abstraction levels.
As shown in Figure 132, the occurrence modeling can be used for many types of definitions,

such as LRUs, software, ports, parameters, messages, and transport elements.
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Figure 132. Occurrence modeling

Figure 132 demonstrates the concept of definition and occurrence modeling. (To simplify
terminology, “occurrence” will be used interchangeably with “usage.”) To understand these
concepts, it is best to start at the bottom with the definition. This corresponds with how the

models are actually built. One starts with definitions — and then creates occurrences.

Figure 132 shows there are two part definitions: 1 and 2. The definition of 1 used to create
occurrences 1.1 and 1.2 (which could be left and right). The definition of 2 is using occurrences
2.1and 2.2.

In this example, there are two assembly definitions: 3 and 4. The definition of assembly 3 is
composed of the usages of 1.1, 1.2, and 2.1. The definition of assembly 4 is composed of the
usage of 2.2.

The assemblies need to be put on the airplane. In this example, there is one occurrence of the 3

assembly definition: 3.1. There is one occurrence of the 4 assembly definition: 4.1.

The airplane definition 5, in this simplified example, is comprised of the occurrences of the 3.1

assembly definition and the 4.1 assembly definition.

This same approach can be used for other elements of the model, such as physical ports. To keep
the example straightforward, an input physical port will be added to the 1 definition. An output
physical port will be added to the 2 definition. When the occurrences of the 1 part definitions is
created, the input physical ports will automatically be created on 1.1 and 1.2. When the
occurrences on the 2 part are created, the output physical ports will automatically be created on
2.1 and 2.2.
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When the occurrences of the 3 assembly definition are created, the physical ports for 1.1, 1.2 and
2.1 will automatically propagate. When the occurrence of the 4 assembly is created, the physical

port of 2.2 will automatically propagate.

Figure 132 shows the promote link form occurrences to definitions. This same approach can be

extended to transport elements.

This concept is very powerful and needed for the MBSE/MBSA of any large-scale project. If one
changed an attribute on the input physical port, it would automatically propagate throughout the
definition and occurrence models. This might not seem as powerful with this simple example,
but given that some models will consist of millions of objects, this becomes an almost mandatory

capability.

Modeling the transport elements establishes the transmission path. Once this has been done, the
consistency (discrepancy checking) component of interface control can then be established, as

depicted in Figure 133.

In this example, there are three bus usages, which are used to transmit and receive data. A
publish link can be created between Parameter 1 — Usage 1 on LRU 1 —Usage 1 and Parameter 1
— Usage 1 on LRU 2 — Usage 1. A publish link can also be created between Parameter 1 — Usage
2 on LRU 1 —Usage 2 and Parameter 1 — Usage 1 on LRU 2 — Usage 1. With the transmission

path established, it is possible to check for discrepancies (e.g., timing).
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Figure 134 shows a data model that can be used for occurrence modeling for signals, logical
ports, physical ports, parameters, software, and hardware. This data model supports the creation
of models for the transmission and receipt of signals, which contain parameters. The key
elements include software, hardware with logical and physical ports, signals (comprised of

parameters in the appropriate signal format), and transmit and receive links.

This data model will be used in subsequent examples to show how it supports the formalisms at

the different abstraction levels, enabling the ability to check for model consistency.
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Figure 134. Data model for occurrences

The focus of this section is to highlight how the definition/usage/occurrence data model can help
with ensuring modeling consistency across different abstraction levels. For simplicity, Figure
135 will start with some of the key modeling building blocks already completed. The system
definition and port definitions are modeled. (System objects communicate through system ports.)
In this example, an ARINC 429 physical port is modeled on Part Definition 1. An ARINC 429
and an Ethernet physical port are modeled on Part Definition 2.
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LRU Definition 1 is created, with the occurrences of Part 1 Definition and Part 2 Definition.

When the occurrence are created, the objects and relationships propagate. This capability helps
ensure model consistency between the definition and the assembly levels. For example, the

Ethernet Port Part Definition on Part 2 is propagated when the Part 2 occurrence is created.
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Figure 135. Definition/occurrence propagation

MGG4 Signal Format (D)

Figure 136 shows the installation of assemblies on an airplane, which is the top-level product
definition. For simplicity, the airplane consists of two installed assemblies. The airplane product
definition is created, with the occurrences of Assembly 1 and 2. When the occurrences are
created, the objects and relationships propagate. This is a fundamental capability to help ensure
model consistency between the assembly levels and the airplane-level definition.
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Figure 136. Assembly installation on the airplane

It should be noted that the definition/occurrence modeling can be done to an infinite number of

abstraction levels, which is why it is a powerful in enabling model consistency.

Figure 137 shows how the models can be kept consistent when changes are made. In this

example, an input physical port and input application port are added to the part definition.
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Figure 137. Additional system definition

Figure 138 shows the propagation of the additional definition at all occurrence levels

. This helps

keep the models consistent at the different abstraction levels when changes are made.
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Figure 138. Propagation of definition level changes to occurrences

This is a powerful functionality, particularly when managing interfaces. This helps ensure the
consistency of the interface models at different abstraction levels.

As shown in Figure 139, interfaces should never be created at the definition level. Interfaces
should be created at the occurrence level. Intuitively, this should make sense. This was described
in further detail in section 6.1, which discussed how it is important to know if an LRU is

subscribing the left, center, right outputs (or some other combination).
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Figure 139. Interfaces at occurrence level

Figure 140 shows how the interfaces made at the occurrence level would propagate to higher

occurrence levels.
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Figure 140. Interface fault propagation

Figure 141 shows the creation of a physical port definition to a part definition, which has
occurrences on multiple products.
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Figure 141. Definition creation for reuse across products
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Figure 142 shows how the definition can propagate via occurrences both within and across
products. This ability is particularly helpful if the same component is being used on different

products (as often happens in the aviation industry).

Figure 142. Propagation within and across products

One of the biggest benefits of MBSE and MBSA is having a “single source of truth,” which
precludes the need to synchronize data across different sources. This is where MBSE and MBSA

can achieve efficiencies from the existing, acceptable processes.

One of the biggest challenges in MBSE and MBSA is to avoid having to recreate models created
at different abstraction levels. Another challenge is the ability to keep the models synchronized.
The preceding examples demonstrated how the definition/usage/occurrence modeling could
address these challenges, particularly for highly integrated architectures. This capability can be
foundational for being able to assess the completeness and correctness of the models, particularly

from both a vertical and horizontal integration perspective.

9 Recommendations from MBSE/MBSA implementation

This section describes the criteria, mitigation approaches, recommendations, training material,
and position papers, particularly related to training and existing guidance/standards. Table 17

describes the approach to address these research objectives.
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Table 17. Current guidance and research approach

training material, or
position papers

Research Objectives Detailed Work Description

Develop criteria, Identify potential additional training material.

mitigation approaches, Identify proposed modifications to existing guidance/standards.
recommendations,

9.1

Training

If there are gaps in understanding or implementing the underlying principles of SE or safety,

moving to MBSE and MBSA will not provide a panacea. Foundational knowledge, particularly

related to SE and safety and modeling, are prerequisites to effective MBSE/MBSA training and

implementation. This foundational training is applicable from both a development perspective

(SE practitioner and safety practitioner) and from the certification engineer perspective. The

certification engineer is considered to be an FAA certification engineer or delegate.

The training progression, as shown in Figure 143, consists of four fundamental building blocks:

Foundational SE and safety training, which addresses the required SE and safety

principles.

Foundational modeling training, which addresses understanding the data models,

engineering databases, creating model queries and modeling standards.

MBSE and MBSA training, which addresses how to implement the SE and safety

principles in a model-based environment.

MBSE architect training, which addresses how to create an MBSE/MBSA integrated

architecture and tool suite specifications.
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Figure 143. Training progression

Table 18 identifies the recommended audiences for the respective foundational training blocks.

Table 18. Recommended training audiences

Training SE/Safety Modeling MBSE/Model- | Certification | MBSE
Practitioner | Practitioner | Based Safety | Engineer Architect
Practitioner

Foundational X X X
SE/Safety
Training

Foundational X X
Modeling
Training

MBSE/MBSA | X X X
Training

MBE X
Architecture
Training

The SE/safety practitioner conducts the SE and safety activities. Examples of SE activities
include requirements authoring, requirements validation, and implementation verification.

Examples of safety activities include conducting FHAs, PRAs, and systems safety assessments.

The modeling practitioner creates the data models, which is usually done in UML. The

importance of data models was discussed in section 8.

The MBSE/model-based safety practitioner uses MBSE and MBSA to conduct the required SE

and safety activities.

160



The certification engineer is responsible for ensuring that the required certification activities
have been completed, regardless of whether it is done with the more traditional document-

focused approach or a model-based approach.

The MBE architect is responsible for integrating the overall MBE data models. As an example,

tasks can include integrating the supply chain and manufacturing production.

Note: There should be a limited number of MBE architects. As noted in Table 18, the training

material is only recommended for one job role. It is included for completeness.

These roles are not meant to be mutually exclusive. It is possible that the same individual creates

both the data models and conducts the model-based SE or safety activities.

These recommendations are about recommended training content. This section/paper provides no

recommendation for who should create or conduct the training.

9.1.1 Foundational systems engineering and safety training

It is important to have a good understanding of SE and safety before trying to implement MBSE
and MBSA. It is important to have the required foundational knowledge before transitioning to
MBSE and MBSA. Figure 144 highlights the importance of having a strong foundation in SE
and safety; this is critical to successfully implementing MBSE and MBSA.

Model Based Engineering
Architect Training

MBSE/MBSA
Training

Foundational
Modeling Training

Foundational
Systems
Engineering / Safety
Training

Figure 144. Foundational systems engineering and safety training

The SE engine, as shown in Figure 145, provides a good framework for the foundational SE and
safety principles. It includes activities and processes that are conducted to ensure that the user

needs are met. It consists of the following:

= Requirements architecture depicts a hierarchy of requirements elements and their

relationship to each other, as well as their relationships to other architectural elements.
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= Functional architecture identifies what has to be done. It is the hierarchical arrangement
of functions, their internal and external (external to the aggregation itself) functional
interfaces and external physical interfaces, their respective requirements, and their design
constraints. Functional architecture is allocated to the logical architecture, showing that

logical architecture fulfills the intent of the functional architecture.

= Logical architecture identifies how it is done. Logical architecture includes definition of
logical elements and the definition of the external and internal system interfaces. Logical
system architecting establishes a “type of”” depiction of the design solution, which allows

for analysis of alternatives prior to entering physical architecture.

= Physical architecture identifies how it is implemented. The physical architecture
associates identified physical components (which have properties, such as size, volume,

density, part specifications) to their logical representation in the logical architecture.
= Validation ensures that requirements are complete and correct.
= Verification ensures the implemented design meets the requirements.

= Systems analysis and control are activities used to validate the systems architecture and

to maintain control (via configuration management and program management practices).
As shown in Figure 145, safety is embedded in each of the different elements of the SE.

For example, safety-related requirements, which are derived from safety analyses, are part of the
requirements architecture. The functional architecture contains functions used for the safety
airplane-level and system-level FHAs. The logical architecture contains the systems architecture
that will be used in the PSSAs and failure mode effects analyses (FMEAs). The physical
architecture contains the spatial layout of the design, which is needed to support PRAs and
ZSAs. Verification and validation include safety activities. For example, PASAs and PSSAs are
conducted to ensure the safety requirements are complete and correct (validation). Verification is

conducted to ensure that the implementation is meeting the safety requirements.
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Figure 145. Training progression

Figure 146 contains an example of a training curriculum that would help to ensure there is a
strong foundational understanding of SE and safety principles. This training should be
independent of any tool or modeling discussions. The recommended foundational SE and safety
training should include:

= Introduction to SE and safety principles training.

= Requirements authoring and management training.
* Functional Analysis training.

= Functional Integration training.

* Interface management training.

= Safety training.

= Configuration management training.

Requirements
Authoring and
Management

Introduction = g ' '

I;f:f;;::]nsq S L iieracs Q_J Safety Configuration
‘ . Integration i . i

and Safety g' ! Manag.emem . Management

Principles
*

Functional
Analysis
*®

* Includes Validation and Verification

Figure 146. Sample training curriculum
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As noted in Figure 146, validation and verification are included in multiple parts of the training
curriculum. For example, requirements authoring and management training should include
requirements validation (completeness and correctness). Safety training should include how to

validate and verify that the systems architecture is safe in nominal and non-nominal conditions.

9.1.1.1 Introduction to systems engineering and safety principles training
Entry-level training should be available for individuals who are not familiar with SE and safety
principles. This entry-level training should provide an overview of the entire SE process and

address the following questions:
=  Whatis “SE”?
= What are safety principles”
=  Why use it?
=  When is it used?
= How is SE used?

9.1.1.2 Requirements authoring and management training
Developing requirements and objectives and verification plans is a key element of the larger SE
process. It is important to have a strong understanding of the steps to define, validate, verify, and

manage requirements throughout the life of the product.
The requirements authoring and management training should address the following topics:
= Requirements management process.
= Requirements development.
= Requirements validation.
= Requirements verification.

The training should address how new and derived requirements are developed using inputs from
a variety of sources and analytical approaches to define specific, valid, and verifiable product
requirements. It should address how to decompose the requirements into lower level
requirements. The training should emphasize that the requirements management process steps
are performed iteratively and continually over the life of the product, as requirements are added

or modified, with increasing levels of fidelity.
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The training should address how to validate that requirements are correct and complete.
Requirements correctness includes checking the implementation of standard guidelines for
writing good requirements and ensuring that the requirements are technically correct. To ensure
that the requirements are complete, the requirements architecture should be reviewed to identify
missing, competing, conflicting, duplicate, testable, or obsolete requirements. This includes
requirement traceability analysis, which reviews the parent-child traceability for all requirements
developed as a result of top-down decomposition activities. This helps validate that applicable
requirements can be easily and unambiguously tracked to their next higher levels and do not

inappropriately skip levels, thus demonstrating completeness.

The training should address how to verify that the design correctly implemented the validated
requirements. It should address different verification methods, such as analysis, inspection,

demonstration, and test.

9.1.1.3 Functional analysis training

The functional analysis training should include:
= Identifying what the system has to do.
* Identifying functions the system needs to perform (the “what”).
= (Creating a functional architecture.

The training should address the required tasks to be performed during functional architecting. A
key element of a functional analysis is the creation of a functional architecture that describes the
functions, and then allocates those functions to a design. This includes describing the
requirements for each function, organizing the functions logically, detailing the functions by

levels, and allocating the functions to the logical or physical architecture.
Foundational elements of functional analysis include:

= Functional decomposition.

= Functional data flow diagrams.

* Functional flow block diagrams, which identify the temporal relationships between

functions.

Figure 147 shows an example of a functional decomposition, which identifies the parent-child
hierarchy of functions. The way in which the functions are conceived will be the form that the
design and final product take.
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Figure 147. Functional decomposition

Figure 148 shows an example of a functional data flow diagram, which identifies the input and
output data flows (i.e., interfaces) between functions.
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Figure 148. Functional data flow diagram

Figure 149 shows an example of a functional data flow diagram, which identifies the temporal
relationships between functions. It is a simplified diagram, showing the relationships between the
Environmental Control System (ECS) with the galley.

Supply medium Transfer heat to Remove heat
PEY medium from medium
ECS Galley ECS

Sense medium
temp

Read desired

Set food temp +—— temp

} Compare temp

Adjust power

Cabin Sys

Sense food
temp

Figure 149. Functional flow block diagram
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Functions can be considered to be a subset of the requirements architecture. The functions are
captured in the “verb-noun” format and used to create data flow diagrams and functional flow
block diagrams, as shown in the examples above. Theoretically, on a completely new program
(e.g., new architecture, new mission), the functions should be created first. The functions would
then be expanded into the more expansive requirements format. Additional performance and

constraints would be generated.

Figure 150 shows the interrelationships between the requirements architecture and the functional
architecture.
Bequirements Architecture

Req A-1
Req B-1
Req C-1®
ReqC-2 *,
ReqC-3
Reg D-1 \
ReqD-29
RegC-4 *
Req B-2
Req A-2

Req A-2e - -__Func-'ﬁ{?na1 Architecture

. Arpldne 'y
Decomp

Functional Flow

-+

_{_{_‘_I Data Flow Diag
—

Q)

A1 0.

Figure 150. Requirements and functional architecture

9.1.1.4 Functional integration training
Functional integration identifies interfaces and validates functional integration correctness. An
integral part of the functional integration activities is the validation of the logical architecture,

which is implementing the functions. The functional integration training should include:

= Understanding the differences between federated and integrated distributed system

architectures.
= Understanding the challenges associated with increasing integration.
= Understanding the purpose and composition of a systems architecture.

» Understanding what a systems architecture is.
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= Identifying users and their needs.
= Developing functional architectures.
= Jdentifying performance measures

= Validating requirements architectures by analyzing requirements allocations to functions

and systems architecture elements.
= Developing logical architectures.
= Integrating systems.
= Analyzing integrated architectures for potential failure modes, effects, and criticality.

As shown in Figure 151, functional integration includes creating the logical architecture and
integrating it with the requirements architecture and functional architecture.

Logical Architecture

Requirements Architecture Block Diagrams
Structure
ReqA-1-... Airplane
Req B-1 i
Req C-1® ——
ReqC-2 o
ReqC-3 ™ Systems
Req D-1 %
ReqD-2¢ % Subsystems.
RegC-4 ° AN .
Req B-2 LRl
ReqA-2 i oy
Req p..:q.___\ "'-L.Func'ﬁn_nal Architecture ’ 4
" Aiplne Pl P
Lol b &7 Do

Functional Flow

Data Flow Diag

[]

Figure 151. Functional integration

Figure 152 shows some of the increased integration challenges, as federated systems move to
integrated distributed system architectures. Increased integration helps to improve performance
and reduce weight by reducing the number of required LRUs or physical components and wiring,
and improving modularity for updates. Functional integration training should clarify the required

activities that need to be accomplished for the different types of system architectures.
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Figure 152. Increased integration

The transition from federated to integrated, distributed systems increases the required integration
activities to ensure that the system is going to work as expected, in both nominal and failure

conditions.

For example, as shown in Figure 152, an ARINC429 architecture is federated, with most LRUs
executing functions locally. There are point-to-point, unidirectional buses; bi-directional

communications require two buses. Signals are transmitted from publisher to all subscribers.

In an ARINC629 architecture, some centralized computing exists. There are multiplex buses,
two-way communications, and multiple transmitters per individual bus. Signals are broadcast to

every LRU connected to the bus. Bus schedules are required to avoid signal clashes.

In an ARINC664 architecture (which is common for IMA architectures), computing is
centralized. Most LRUs gather “raw” data, which is then processed by centralized computing
functions. There are multiplex buses, two-way communications, and multiple transmitters per
individual bus. ARINC664 messages are not broadcast over the entire network. Message traffic

is directed to subscribers through routers (switches).

The transition from federated to integrated, distributed architectures can increase the number of

interfaces, which increases the importance of interface management.
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9.1.1.5 Interface management training

To ensure that systems will work properly in both nominal and failure cases, it is important to be
able to develop, negotiate, and manage logical interfaces. This includes designating and defining
the logical interfaces (internal and external) and documenting interface descriptions into an

integrated data package. Interface management training should cover topics such as:
= Establishing useful boundaries around a system.

= Defining interfaces that cross the system boundaries in terms of connections, conduits,

and media.
= Describing how interfaces are managed and reconciled across system boundaries.
= Describing how interface standards facilitate the interface management task.

=  Describing how systems evolution is making interface management more complicated
and difficult.

= Describing how logical architectures facilitate interface management and reconciliation.
= Describing in detail the process for electronic interface management.
= Discussing the various safety implications of interface management.

9.1.1.6 Safety training

The foundational safety training material should address the following questions:
= What does it mean for the system to be safe?
= How do you ensure good architectural and functional decisions?
= How do you ensure that appropriate mitigations/redundancies are in place?
= What are the objectives of the different types of safety analyses?
= How do you know when analyses are complete?
= How do you account for interactions between systems?
= How do you ensure safety will be maintained for subsequent changes?

Figure 153 identifies different types of safety analyses that should be covered in foundational

safety training.
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Figure 153. Safety analyses

There should be a good understanding of each of the different types of safety analyses and
assessments and their interrelationships, as follows:

= FHAs are comprehensive qualitative evaluations of airplane or systems functions, the
failure conditions associated with each function, the airplane effects, and hazard
classification of those effects. FHAs are performed at the airplane level and at the

systems level.

= PASA is used to evaluate the proposed airplane architecture to develop safety
requirements:

o Ensure no single system fault can result in catastrophic outcome.

o Ensure the robustness of design (e.g., allocation of the resource functions).
o Evaluate iterative nature of the design throughout development maturity.
o Identify safety requirements.

= PSSA is performed early during airplane development to examine proposed system

architecture by evaluating the failure conditions and associated safety objectives.

= PRA is used to assess external events/threats to ensure continued safe flight and landing

is maintained during and after the event.

= ZSA and ESRs are performed to ensure that equipment and transport element installation

designs meet the safety separation requirements.
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o ZSA is performed on mature digital models, when the design, including transport

elements, is representative of the delivery airplane configuration.

o Engineering Safety Review (ESR) is performed, for example, on the as-built
product, on a first article of new major installations, first airplane of a new type

design.

FMEA is a bottom-up systematic method of identifying the failure modes of a system
item, function, or piece-part and determining the effects on the system and airplane. It is
used to assess any potential single failure of the system components or software that

could result in hazardous or catastrophic conditions.

System Fault Tree Analysis (FTA) is a graphical quantitative evaluation of failure

conditions that contribute to the top event.

System Common Mode Analysis (CMA) is used to evaluate potential common mode

failures in the systems that tree up to a top-level event. CMA is intended to verify:
o Adequate independence between the AND-ed events.
o Failures and errors affecting multiple systems are evaluated.

Resource Assurance Analysis (RAA) is used to verify that the DAL of items supporting
an airplane level FHA entry satisfy the hazard classification for each airplane level failure

condition.

Single and Multiple Failure (S&MF) Analysis provides a structured methodology to
analyze failures of key integration components and functions to determine if airplane,

flight crew, and occupant impacts are as expected and acceptable.

9.1.1.7 Configuration management training

Configuration management training should address the five functions of configuration

management, as shown in Figure 154:

Configuration management planning and implementation management provides the

umbrella plan and aligns the configuration management related deliverables.

Configuration identification represents the processes by which product configuration
items are labeled and documented. This includes, for example, product structure design,
part numbering, and management identifies documents, and approves and controls

changes and variances to baselines, requirements, products, and documentation.
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= Configuration status accounting records and reports information needed to manage the
configuration of a product effectively throughout its life cycle, from design to delivery

through disposal.

= Configuration verification and audit establishes the traceability to verify that the product
meets its requirements and has been accurately represented in all configuration

documentation (i.e., as built = as planned = as designed = as contracted/specified).

= Serialization rules, part marking requirements. Proper configuration identification is
essential to provide technical and contractual control, verification, approval, and change

control for product configurations and their interfaces.

= Configuration change.

Figure 154. Functions of configuration management

Configuration management should address both baseline capture and version control. In an
MBSE/MBSA environment, a baseline is a snapshot of the entire data set. It is a “frozen” version
of the data. Individual data objects can have versions. The training should emphasize the
importance of ensuring that links between different data are treated as their own element; the

links should also have versions and should be included in baselines.

9.1.2 Foundational modeling training

With a solid foundation in SE and safety principles, the next training emphasis should be on

foundational modeling training, as shown in Figure 155.
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Figure 155. Functions of configuration management

Figure 156 shows examples of foundational modeling training topics, consisting of:
* Introduction to data modeling.
= Introduction to engineering databases.
= Composing model queries.

* Modeling standards.

Composing
Model

Queries
—

Introduction
to
Engineering
| Databases
e ——

Introduction
to Data

Modeling
e

Modeling
Standards

Figure 156. Foundation modeling training topics

9.1.2.1 Introduction to data modeling

Understanding data modeling will greatly increase the likelihood of successful MBSE and
MBSA implementation. If MBSE and MBSA are implemented without an integrated, coherent
data model structure, it will be very difficult to achieve the desired MBSE and MBSA benefits.
The data model is foundational to being able to integrate the different models used for the SE

and safety activities.
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An introduction to data modeling should address some basic topics, such as:
* What is a model?
* What are data?
= What is a data model?
*  Why use model data?
=  What is data model composition?
= What are objects?
= What are attributes?

For example, there should be an understanding on considerations to make on whether to model
data as an object or an attribute of an object. An example is the location of equipment (e.g.,
forward equipment bay). Location could be modeled as hierarchical objects; it could also be
modeled as attributes of objects (such as a component location attribute). It is important to

understand the tradeoffs between the different approaches.
The training objectives should enable a person to be able to:

= Define and describe a model.

Define and describe data.

= Define and describe a data model.

= Describe the elements comprising a data model.

= Effectively define objects representing data.

= Effectively define attributes describing objects.

= Effectively define relationships between model objects.
= (Create an integrated data model.

UML is an effective language that can be used to create the data models, document the objects,
attributes, and relationships, as shown in Figure 157. The importance of data models was

discussed in Section 4.6.
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Figure 157. UML 2.0 class diagrams

9.1.2.2 Introduction to engineering databases

Implementing MBSE and MBSA will result in data rich models that can only be effectively
managed in databases. Databases permit multi-user input and immediate synchronization,
improving efficiency and productivity. Usage of a database is also integral to providing the
required configuration management. Engineering databases are also integral to creating the

“single source of truth.”

Figure 158 shows the transition from traditional systems engineering in a document-based
environment to one with model-based generation of artifacts. As discussed in in section 7.1,
MBSE and MBSA allow documents to be generated from a single source of truth. This precludes

the need to synchronize the same data in multiple documents.
Training should identify how to:
= (Create a data model capturing the content of a document.
= Configure a database to represent a data model.
= Populate a database with a model comprising the entire contents of a document.

= Perform basic queries on a database model.
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Figure 158. MBSE/MBSA model generated documents

It is beneficial for the training to emphasize that documents are not data in and of themselves.

Figure 159 provides an example, showing how documents are repositories of data.
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Figure 159. Documents as repositories of data

As shown in Figure 160, a document has implied relationships that are embedded in its document

structure. This includes both implied hierarchies and allocation relationships. There are several

benefits to explicitly capturing these relationships and hierarchies in a model. Explicit

relationships and hierarchies can be queried, analyzed, and validated. Rules can be established to

help validate the completeness and correctness of the document’s content. It is difficult (more

time consuming) to do this with implicit relationships.
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Figure 160. Implied relationships in documents made explicit in models

Figure 161 provides an example of one way to parse the contents of a document into a data
model. The training will need to recognize that this transition from a document-centric
perspective to a model-based perspective can require a cognitive shift in the users. A data model
infrastructure needs to be established in order to successfully implement MBSE and MBSA. It is

important to also recognize that it can sometimes require a culture shift.
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Figure 161. Data model for model-based documents
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9.1.2.3 Composing model queries

One of the key benefits of model-based engineering is the ability to query and analyze the data.
The ability to create model queries is important, because it enables the identification of missing,
incorrect, or incompatible data. Examples of errors are unallocated functions, discrepancies
between required network timing definitions, and bandwidth overutilization. Without query
capabilities, MBSE and MBSA cannot be achieved; models can be captured, but they cannot be
adequately analyzed.

The training material should enable the user to:

= Define a database query, including the SELECT statement and SELECT statement

clauses.
= Identify the common elements of a database query and describe their proper usage.

= Apply database queries to system architecture models and construct logical queries of
these models by appropriately applying the query elements.

Building a useful QUERY entails structuring the SELECT statement elements, so they are
logically correct to return the desired results. The training should include fundamental and

common elements of a SELECT statement, such as:

= FROM

= WHERE

= AND

= OR

= FOR EACH
= ADD

= REMOVE

= ORDER BY

It is important to be familiar with the underlying data model. This will greatly improve the
queries and increase the understanding of what questions can be asked of the model. In turn, this
improves the analytical capabilities. Figure 162 provides an example of the underlying data
model that would support a query to know the functions and requirements that the system
hardware must fulfill.
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Figure 162. Data model queries

The modeling practitioner should work closely with the SE and safety practitioner to ensure that

the data model and queries support their required activities.

9.1.2.4 Modeling standards
Section 8.3 highlights the importance of modeling standards in being able to integrate the

different models. Modeling standards (see example in Figure 163) help ensure that the models

are created in a consistent manner. The standard data model is then constrained by embedded

rules that help achieve data integrity.

The training material should enable the user to complete activities, such as:

Compose the requirements architecture data model.
Compose the functional architecture data model.
Compose the logical architecture data model.

Create an integrated architecture model, comprising requirements and functional

architecture elements that are allocated to elements of the logical architecture.

Comply with systems architecture modeling standards.
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Figure 163. Model standards example

9.1.3 MBSE/MBSA training

As shown in Figure 164, with the foundational SE and safety and foundational modeling training

in place (as needed for the target audiences), effective MBSE/MBSA training can be conducted.

Model Based Engineering
Architect Training

MBSE/MBSA
Training

Foundational
Modeling Training

Figure 164. MBSE/MBSA training
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Figure 165 shows an example of recommended MBSE/MBSA training topics, consisting of:
= Introduction to MBSE.
=  MBSE tool suite training.
= Introduction to MBSA.

= MBSA tool suite training.

Introduction MBSE Toal
to MBSE Suite Training

Introduction MBSA Tool
to MBSA Suite Training

Figure 165. MBSE/MBSA training topics

9.1.3.1 Introduction to MBSE training

The concepts covered in Section 3.2 should be included in an introductory MBSE course. As
shown in Figure 166, as part of MBSE, hardware and software are captured, managed, and
integrated in an integrated database. The training material should address how MBSE is used to
integrate SoS, system, subsystem, component and software requirements with the functional,
logical, and physical architecture plus behavior of the system (RFLP+B).
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Figure 166. MBSE introductory material

MBSE introductory material should address creating models both at the systems architecture
level and at the system design level.

The training should cover examples of system architecture and system level artifacts that can be
created in MBSE, such as:

= Use case diagrams.

= Block definition diagrams.
= Activity diagrams.

= Requirements architecture.
= Functional architecture.

= Logical architecture.

= Analysis models.

= Simulation.

9.1.3.2 MBSE tool suite training

There are several commercially available tools that enable MBSE. This part of the training
would be geared toward the tool-specific application of MBSE. Even if the underlying data
model is the same (which is not a given), there can be differences in the tool implementation to

achieve the same result. Tool-specific training will not be effective without a good understanding
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of the recommended prerequisites, which provide the “why” of MBSE. The tool-specific training
explains “how” the “why” is mechanized for a particular tool suite. Figure 167 is an example of a
tool-specific training, showing how a requirement (and its children requirements) could be

created.
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Figure 167. Tool-specific application

9.1.3.3 Introduction to MBSA training

The concepts covered in section 3.3 should be included in an introductory MBSA course. As
shown in Figure 168, the training should identify how to model key MBSA building blocks, such
as functions, FHAs, and systems architectures (with associated safety dependencies). It should
emphasize both the top-down analyses (such as cutset generation) and the bottom-up analyses

(such as fault propagation).
Important concepts to include in the training material include how to model the following:
= Safety dependencies.
= Redundant sources.
= Loss of function.
= Malfunction (including erroneous).

= Integration of fault propagation and cutset generation.
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Figure 168. MBSA introductory training material

Interrelationships exist between the different safety analyses. Figure 169 provides an example of
the integration between top-down FHAs and bottom-up FMEAs, integrated with the results of
the fault trees. The integration of these three analyses, as needed, validate that the top-down and
bottom-up analyses are complete, correct, and consistent. In addition, it helps validate that the
airplane level hazard categorization is acceptable, based on the failure probability. The MBSA
training should address how to ensure that the top-down and bottom-up safety analyses are

consistent.

Top Down FHA *  \Validates airplane level
hazard categorization are

* Top down, graphical acceptable based on

] representation of the failure probability
logical relationships
FTA among fault and failure +  Validates that top down
BB and bottom up analyses

'+ Validation failure are complete, correct,
probability is acceptable and consistant
Bottom Up FMEA for hazard category

—

Figure 169. Integration of top-down and bottom-up safety analyses

The efficiency of ensuring the consistency between different safety analyses is improved by
having a “single source of truth” MBSA model. For example, if a system FMEA hazard
classification is more severe than its system FHA, then either the system level FHA needs to be

updated or a design/procedure change is needed.

9.1.3.4 MBSA tool suite training

There are several commercially available tools that enable MBSA. In addition, some companies
have developed their own proprietary tools. Similar to MBSE, this part of the training would be
geared toward the tool-specific application of MBSA. The tool-specific training explains “how”
the “why” is mechanized for a particular MBSA tool suite.
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9.1.4 MBSE architect training

As shown in Figure 170, the final recommended training material is related to MBSE architect
training. It is recommended for architects who are responsible for developing the infrastructure

for large-scale systems integration.

MBSE/MBSA
Training

Foundational
Moadeling Training

Figure 170. MBSE architect training

As shown in Figure 171, the MBSE architect is responsible for the integration of the different
MBSE activities and the integration of MBSE with MBE.

MBE

MBSE

Customer
Specifications

Program
Management

Analytic Models

Mechanical &
Eleclrical Models

Manufacturing

Software Models

Figure 171. MBSE integration with MBE (source: Boeing)

With MBSE architecture training, one should be able to:
= Describe and create an MBSE architecture specification.

= Develop effective work processes describing necessary tool suite functionality.
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= Develop an effective domain model (data model), defining the data, attributes, and

relationships necessary to support work processes.

= Develop effective business requirements constraining the domain (data model) within the

MBSE tool suite.

9.2

Proposed modifications to existing guidance/standards

The existing guidance/standards describe the objectives that must be satisfied, regardless of

whether traditional systems engineering/safety or MBSE/MBSA is being used. Table 19

identifies key industry guidelines/standards and the primary applicable system level, although

other guidelines/standards may be used.

Table 19. Key existing industry guidelines

Development of Civil
Aircraft and Systems

requirements and verification of the design
implementation for certification and product
assurance. The development planning elements
consist of:

* Development.

= Safety program.

* Requirements management.

* Validation.

* Implementation verification.

= Configuration management.

* Process assurance.

= Certification.

* Software integration process.

= Software configuration management.
* Software quality assurance process
» C(ertification liaison

Industry Guideline Purpose Primary
Applicable
System Level

ARP 4761, Guidelines | Provides guidelines and methods for Airplane

and Methods for performing the safety assessment for civil system/subsystem

Conducting the Safety | aircraft, including (but not limited to) safety

Assessment Process on | analyses such as FHA, PSSA, and SSA.

Civil Airborne Systems

and Equipment

ARP 4754A, Provides guidelines on the development Airplane

Guidelines for assurance process. This includes validation of | system/subsystem
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Industry Guideline Purpose Primary
Applicable
System Level

DO-254, Design Provides design assurance guidance for the Airborne
Assurance Guidance development of airborne electronic hardware. | Electronic
for Airborne Electronic | Key processes include: Hardware (AEH)
Hardware » Hardware safety assessment.

» Requirements capture process.

= Validation.

» Verification.

* Configuration management.

* Process assurance.

= Certification liaison.
DO-297, Integrated Provides guidance for IMA modules, Software AEH
Modular Avionics applications, and systems. The integral
(IMA) Development processes consist of:
Guidance and = Safety assessment.
Certification » System development assurance.
Considerations =  Validation.

= Verification.

= Configuration management.

* Quality assurance.

= Certification liaison.
DO-178, Software Provides guidance for the production of Software

Considerations in
Airborne System and
Equipment
Certification

software for airborne systems and equipment
that performs its intended function with a level
of confidence in safety that complies with
airworthiness requirements. The guidance
includes:

= Objectives for software life cycle
processes.

= Activities that provide a means for
satisfying those objectives.

= Descriptions of the evidence in the
form of software life cycle data that
indicate that the objectives have been
satisfied.

= Variations in the objectives,
independence, software life cycle data,
and control categories by software
level.
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Industry Guideline Purpose Primary

Applicable
System Level
DO-331, Model-Based | Contains modification and additions to DO- Software
Development and 178C objectives, activities, explanatory text,
Verification and software life cycle data that should be
Supplement to DO- addressed when model-based development and
178C and DO-278A verification are used as part of the software life
cycle.

Section 4 discussed the interrelationships between the different industry guidance/standards. In
general, the interrelationships are well established and clear in the industry guidance
documentation. These interrelationships remain the same, regardless of whether the development

is occurring via the more traditional document-based approach or via MBSE/MBSA.

Because there is a tendency for systems architecture to become more integrated, there are
benefits to emphasizing the need for both vertical and horizontal integration. Figure 172 shows
the vertical and horizontal integration at the different levels (airplane, system, and item). This is

not meant to imply that the existing guidance is inadequate; it is a question of emphasis.

Alrcraft

System

Hem

Figure 172. Horizontal and vertical integration
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Requirements errors, omissions, or conflicts can be caused by different factors, such as:

= [ncomplete, incorrect, or missing requirements — Missing requirements, by definition,
will not be incorporated into the design. Incomplete or incorrect requirements may be
incorporated into the design, but implementation verification conducted against the
incomplete or incorrect requirements should reveal the deficiency, therefore highlighting

the importance of validating requirements to be complete and correct.

= [Incorrect implementation of otherwise correct requirements — In this case, the
requirements were validated to be complete and correct. However, the design did not
actually meet the requirement. This should be discovered during the implementation

verification.

= [ncomplete, inadequate change impact analysis — In this case, a change is made to an
established verified baseline. If a change is not adequately addressed, it could adversely
affect the operation of another aircraft system, function, or sub-function. This is
sometimes referred to as “change on change.” After a change is implemented in one
system, it may have unanticipated, unexpected effects on other systems, resulting in the

need to drive additional changes.

= [ncomplete, inadequate planning — In this case, required activities are not conducted,

because the planning was incomplete or insufficient.

Table 20 identifies potential improvements to key existing guidance/standards for highly
integrated, distributed systems. Section 9.1 discusses how one needs to do sufficient traditional
SE/safety before adequate MBSE/MBSA can be achieved. Having incomplete, incorrect, or
missing requirements will have an adverse impact, regardless of whether one is using a
traditional or model-based approach. This table identifies potential improvements to address root

causes.
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Table 20. Potential improvements to key existing guidance/standards

Root Cause Potential Improvement

Incomplete, incorrect, or | Improved understanding of the integration of new technologies,
missing requirements particularly with respect to timing (e.g., latencys, jitter).

Improved understanding of requirements in light of potential failure
conditions and/or unexpected pilot actions; not identifying the
system modes into requirements definition.

Improved systems integration focus leading to prevention of
requirements’ conflict between systems/subsystems boundaries.
Improved systems integration focus leading to cumulative effects of
otherwise acceptable individual systems level cascading effects.
Improved level of formality and process definition in system
validation that ensures consistency and completeness.

Improved validation of interfaces between systems, commensurate
with the inevitable evolutionary nature of this complex problem.
Improved validation of the assumptions about the environment.

Incomplete, inadequate Improved consideration of integration aspects when developing a
change impact analysis problem solution, particularly for new, novel, and/or complex
systems and new environments.

Improved process guidance to facilitate requirements validation for
the modification of existing systems.

Incomplete, incorrect Improved consideration of integration aspects when developing a
planning problem solution, particularly for new, novel, and/or complex
systems and new environments.

Improved process guidance to facilitate requirements validation for
the modification of existing systems.

The recommended improvements could help clarify existing guidance/standards. However, the
major impediment to successful large-scale implementation of MBSE and MBSA is not related

to improving existing industry guidance/standards. The biggest impediments are:
= Data standards.
= Tool capabilities.

9.2.1 Data standards

Data standards are the rules by which data is described and recorded. In order to share, exchange,
and understand data, the format, as well as the meaning, must be standardized. Data standards

are the foundation for data interchange/exchange/language consistency.
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Data standards are needed in order to:

= Enable model architecture reuse by providing an agreed upon way to author the systems
architecture independent of tool implementation.

= Improve integration of safety and reliability data with the system model by providing an

agreed upon way to author architecture models.

= Improve integration of supplier models by providing an agreed upon way to author

design and vertically integrate.

= Improve model quality by providing a standard format for analysis and simulation

models.

= Improve requirements quality by providing a standard exchange format for requirements
(such as importing/exporting requirements to other engineering domains or exchanging
supplier data).

= Enable digital threads throughout design life cycle.

If different data standards are being used, it will be extremely difficult (if not impossible) to
combine the data from multiple sources. This becomes increasingly important, as systems

architectures move from federated systems to integrated, distributed systems.

Figure 173 shows an example of data interactions and the number of suppliers involved in a

relatively simple function: turn on a hydraulic pump via a flight deck switch.
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Figure 173. Example of using different data models

This example operation involves equipment from seven different suppliers. Without a common
data standard, the potential for different and incompatible data models from seven different
suppliers exists. Given that this example has a relatively simple interface, it should be apparent
how having different data models could make it significantly difficult to achieve large-scale

systems integration.

MBSE/MBSA standards are relatively weak in interoperability. For example, several SysML
tools do not interoperate with each other. In addition, the SysML standard organization (OMGQG)

does not enforce or promote interoperability.

The creation and adoption of standard models will be helpful to the advancement of
MBSE/MBSA. This should include standard MBSE/MBSA data models, exchange standards,

schema, and accompanying composition/aggregation/construction rules.

9.2.2 Tools

This report will continue to remain tool agnostic. However, it is important to highlight (without
going into a tool-by-tool comparison), some common weaknesses in MBSE/MBSA tools,

including:
» (Change and confirmation management.
= Scalability for large amounts of data.

= Supplier integration.
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= Integrating supplier data that uses a different tool but is using the same standard.
= Sharing only a portion of the data with the supplier.

MBSE/MBSA tools tend to have been developed independently. Because tools tend to have
different data models, the different data models need to be mapped to enable data sharing. Data
transfer utilities need to be developed to enable data to be transferred between tools. Developing

and managing these different data utilities can become cost prohibitive.

10 Recommendation
To help with MBSE/MBSA implementation across the industry, it would be helpful if the FAA

participated with a standard organization to help emphasize the need for the creation of
recognized MBSE/MBSA data standard.
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